Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor-phase reaction

For homogeneous unimolecular reactions, the reaction rate is proportional to the first power of the concentration of the species reacting. For a homogeneous bimolecular process, the observed reaction rate is the rate constant multiplied by the concentration of the activated complex, which is, in turn, proportional to the product of the partial pressures of the two reacting species. [Pg.24]

The advantage of using vapor phase conditions is the continuous thermal removal of water and the simple implementation of a continuous nitration process based on a fixed-bed of the solid acid. Elevated reaction temperatures, however, lead to problems of safety, catalyst stability, and by-product formation, and optimization [Pg.128]

By use of H-ZSM-5 with a Si-to-Al ratio of 30 and boron ZSM-5, Salakhutdi-nov et al. [30] conducted the nitration of toluene with N2O4. No yields were reported, but boron ZSM-5 increased p-NT selectivity from 47 to 67 % at 125 °C. It was concluded that at elevated temperatures ( 125 °C) NB was formed in increasing amounts by dealkylation reactions after ipso attack of the aromatic compound by the nitronium ion. [Pg.129]

The vapor-phase nitration of benzene with NO2 was investigated by Suzuki et al. using polyorganosiloxanes bearing sulfonic acid groups and silica-supported benzenesulfonic acid catalysts [31]. Phenylsulfonic polysiloxane was the most active among the polysiloxanes tested, its activity was not related to the concentration of acid sites as determined by a titration method, however. From the partial pressure dependence of the reaction rate it was concluded that the formation of NO as the active species was the rate-limiting step [32]. [Pg.129]

Vassena et al. [34] showed that zeolite H-beta resulted in enhanced para selectivity in the vapor phase nitration of toluene at 158 °C with 65 % nitric acid. H-ZSM-5 and Deloxan, a sulfonic acid-bearing polysiloxane, were not selective. Dealumination of H-beta to increase its hydrophobicity was detrimental with regard to activity and para selectivity suggesting that catalytic activity was directly related to the acid site concentration. Characterization of the recovered catalyst showed that deactivation was not related to structural damage in the highly acidic reaction medium but rather to pore filling by strongly adsorbed products/by-prod-ucts. [Pg.129]

836 h (benzene SV = 170 h ). It was claimed that the method was applicable for the production of nitrochlorobenzene but was less suitable for the nitration of toluene. [Pg.130]


Increasing the pressure of irreversible vapor-phase reactions increases the rate of reaction and hence decreases reactor volume both by decreasing the residence time required for a given reactor conversion and increasing the vapor density. In general, pressure has little effect on the rate of liquid-phase reactions. [Pg.43]

Multiple reactions producing byproducts. The arguments presented for the effect of pressure on single vapor-phase reactions can be used for the primary reaction when dealing with multiple reactions. Again, selectivity is likely to be more important than reactor volume for a given conversion. [Pg.44]

Methyl and 2,4-dimethylthiazole were prepared by the vapor-phase reaction (450 to 500°C) of sulfur with diethylamine and diisopropylamine, respectively (816) yields were 66 and 59%. [Pg.305]

Amm oxida tion, a vapor-phase reaction of hydrocarbon with ammonia and oxygen (air) (eq. 2), can be used to produce hydrogen cyanide (HCN), acrylonitrile, acetonitrile (as a by-product of acrylonitrile manufacture), methacrylonitrile, hen onitrile, and toluinitnles from methane, propylene, butylene, toluene, and xylenes, respectively (4). [Pg.217]

The base-catalyzed reaction of acetaldehyde with excess formaldehyde [50-00-0] is the commercial route to pentaerythritol [115-77-5]. The aldol condensation of three moles of formaldehyde with one mole of acetaldehyde is foUowed by a crossed Cannizzaro reaction between pentaerythrose, the intermediate product, and formaldehyde to give pentaerythritol (57). The process proceeds to completion without isolation of the intermediate. Pentaerythrose [3818-32-4] has also been made by condensing acetaldehyde and formaldehyde at 45°C using magnesium oxide as a catalyst (58). The vapor-phase reaction of acetaldehyde and formaldehyde at 475°C over a catalyst composed of lanthanum oxide on siHca gel gives acrolein [107-02-8] (59). [Pg.50]

Reactions with Ammonia and Amines. Acetaldehyde readily adds ammonia to form acetaldehyde—ammonia. Diethyl amine [109-87-7] is obtained when acetaldehyde is added to a saturated aqueous or alcohoHc solution of ammonia and the mixture is heated to 50—75°C in the presence of a nickel catalyst and hydrogen at 1.2 MPa (12 atm). Pyridine [110-86-1] and pyridine derivatives are made from paraldehyde and aqueous ammonia in the presence of a catalyst at elevated temperatures (62) acetaldehyde may also be used but the yields of pyridine are generally lower than when paraldehyde is the starting material. The vapor-phase reaction of formaldehyde, acetaldehyde, and ammonia at 360°C over oxide catalyst was studied a 49% yield of pyridine and picolines was obtained using an activated siHca—alumina catalyst (63). Brown polymers result when acetaldehyde reacts with ammonia or amines at a pH of 6—7 and temperature of 3—25°C (64). Primary amines and acetaldehyde condense to give Schiff bases CH2CH=NR. The Schiff base reverts to the starting materials in the presence of acids. [Pg.50]

Mercaptals, CH2CH(SR)2, are formed in a like manner by the addition of mercaptans. The formation of acetals by noncatalytic vapor-phase reactions of acetaldehyde and various alcohols at 35°C has been reported (67). Butadiene [106-99-0] can be made by the reaction of acetaldehyde and ethyl alcohol at temperatures above 300°C over a tantala—siUca catalyst (68). Aldol and crotonaldehyde are beheved to be intermediates. Butyl acetate [123-86-4] has been prepared by the catalytic reaction of acetaldehyde with 1-butanol [71-36-3] at 300°C (69). [Pg.51]

Reaction with Ammonia. Although the Hquid-phase reaction of acrolein with ammonia produces polymers of Htde interest, the vapor-phase reaction, in the presence of a dehydration catalyst, produces high yields of [ -picoline [108-99-6] and pyridine [110-86-4] n.2L mXio of approximately 2/1. [Pg.127]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

Chloro-5-trifluoromethylpyridine, an iatermediate to the herbicide flua2ilop—butyl, can be made from ( -picoline by two processes. ( -Picoline is chloriaated to 2-chloro-5-trichloromethylpyridine [69405-78-9], followed by fluoriaation with hydrogen fluoride under pressure (200°C, 10 h) (441) or vapor-phase (350°C, CCl diluent) conditions (442). An alternative process features the siagle-step vapor-phase reaction of ( -picoline with chiorine—hydrogen fluoride (400°C, N2 or CCl diluent) (443). [Pg.338]

Hydration. Water adds to the triple bond to yield acetaldehyde via the formation of the unstable enol (see Acetaldehyde). The reaction has been carried out on a commercial scale using a solution process with HgS04/H2S04 catalyst (27,28). The vapor-phase reaction has been reported at... [Pg.374]

Vinyl acetate (ethenyl acetate) is produced in the vapor-phase reaction at 180—200°C of acetylene and acetic acid over a cadmium, 2inc, or mercury acetate catalyst. However, the palladium-cataly2ed reaction of ethylene and acetic acid has displaced most of the commercial acetylene-based units (see Acetylene-DERIVED chemicals Vinyl polymers). Current production is dependent on the use of low cost by-product acetylene from ethylene plants or from low cost hydrocarbon feeds. [Pg.393]

Other processes recently reported in the Hterature are the gas-phase reaction of lactonitnle [78-97-7] with ammonia and oxygen in the presence of molybdenum catalyst (86), or the vapor-phase reaction of dimethyl malonate with ammonia in the presence of dehydration catalyst (87). [Pg.474]

Ethjlben ne Synthesis. The synthesis of ethylbenzene for styrene production is another process in which ZSM-5 catalysts are employed. Although some ethylbenzene is obtained direcdy from petroleum, about 90% is synthetic. In earlier processes, benzene was alkylated with high purity ethylene in liquid-phase slurry reactors with promoted AlCl catalysts or the vapor-phase reaction of benzene with a dilute ethylene-containing feedstock with a BF catalyst supported on alumina. Both of these catalysts are corrosive and their handling presents problems. [Pg.459]

Tetrahydronaphthalene is produced by the catalytic treatment of naphthalene with hydrogen. Various processes have been used, eg, vapor-phase reactions at 101.3 kPa (1 atm) as well as higher pressure Hquid-phase hydrogenation where the conditions are dependent upon the particular catalyst used. Nickel or modified nickel catalysts generally are used commercially however, they are sensitive to sulfur, and only naphthalene that has very low sulfur levels can be used. Thus many naphthalene producers purify their product to remove the thionaphthene, which is the principal sulfur compound present. Sodium treatment and catalytic hydrodesulfuri2ation processes have been used for the removal of sulfur from naphthalene the latter treatment is preferred because of the ha2ardous nature of sodium treatment. [Pg.483]

Oxidation. Naphthalene may be oxidized direcdy to 1-naphthalenol (1-naphthol [90-15-3]) and 1,4-naphthoquinone, but yields are not good. Further oxidation beyond 1,4-naphthoquinone [130-15-4] results in the formation of ortho- h. h5 ic acid [88-99-3], which can be dehydrated to form phthaUc anhydride [85-44-9]. The vapor-phase reaction of naphthalene over a catalyst based on vanadium pentoxide is the commercial route used throughout the world. In the United States, the one phthaUc anhydride plant currently operating on naphthalene feedstock utilizes a fixed catalyst bed. The fiuid-bed process plants have all been shut down, and the preferred route used in the world is the fixed-bed process. [Pg.484]

Catalytic hydrogenations can be carried out ia the vapor phase or ia the Hquid phase, either with or without the use of a solvent. The vapor phase reaction is limited to compounds which are thermally stable and relatively volatile. High boiling compounds and those which are thermally unstable must be hydrogenated ia the Hquid phase. [Pg.258]

The coproduct 1-phenylethanol from the epoxidation reactor, along with acetophenone from the hydroperoxide reactor, is dehydrated to styrene in a vapor-phase reaction over a catalyst of siUca gel (184) or titanium dioxide (170,185) at 250—280°C and atmospheric pressure. This product is then distilled to recover purified styrene and to separate water and high boiling organics for disposal. Unreacted 1-phenylethanol is recycled to the dehydrator. [Pg.140]

The sulfur trioxide produced by catalytic oxidation is absorbed in a circulating stream of 98—99% H2SO4 that is cooled to approximately 70—80°C. Water or weaker acid is added as needed to maintain acid concentration. Generally, sulfuric acid of approximately 98.5% concentration is used, because it is near the concentration of minimum total vapor pressure, ie, the sum of SO, H2O, and H2SO4 partial pressures. At acid concentrations much below 98.5% H2SO4, relatively intractable aerosols of sulfuric acid mist particles are formed by vapor-phase reaction of SO and H2O. At much higher acid concentrations, the partial pressure of SO becomes significant. [Pg.183]

Carbide. Zirconium carbide [12020-14-3] nominally ZrC, is a dark gray brittle soHd. It is made typically by a carbothermic reduction of zirconium oxide in a induction-heated vacuum furnace. Alternative production methods, especially for deposition on a substrate, consist of vapor-phase reaction of a volatile zirconium haHde, usually ZrCl, with a hydrocarbon in a hydrogen atmosphere at 900—1400°C. [Pg.433]

In recent years alkylations have been accompHshed with acidic zeoHte catalysts, most nobably ZSM-5. A ZSM-5 ethylbenzene process was commercialized joiatiy by Mobil Co. and Badger America ia 1976 (24). The vapor-phase reaction occurs at temperatures above 370°C over a fixed bed of catalyst at 1.4—2.8 MPa (200—400 psi) with high ethylene space velocities. A typical molar ethylene to benzene ratio is about 1—1.2. The conversion to ethylbenzene is quantitative. The principal advantages of zeoHte-based routes are easy recovery of products, elimination of corrosive or environmentally unacceptable by-products, high product yields and selectivities, and high process heat recovery (25,26). [Pg.40]

Preparation. The simplest method of preparation is a combination of the elements at a suitable temperature, usually ia the range of 1100—2000°C. On a commercial scale, borides are prepared by the reduction of mixtures of metallic and boron oxides usiag aluminum, magnesium, carbon, boron, or boron carbide, followed by purification. Borides can also be synthesized by vapor-phase reaction or electrolysis. [Pg.219]

Thermal Cracking. Thermal chlorination of ethylene yields the two isomers of tetrachloroethane, 1,1,1,2 and 1,1,2,2. Introduction of these tetrachloroethane derivatives into a tubular-type furnace at temperatures of 425—455°C gives good yields of trichloroethylene (33). In the cracking of the tetrachloroethane stream, introduction of ferric chloride into the 460°C vapor-phase reaction zone improves the yield of trichloroethylene product. [Pg.510]

Hydrochlorination of Ethylene. The exothermic vapor-phase reaction between ethylene [74-85-1] and hydrogen chloride [7647-01-0] can be carried out at 130—250°C under a variety of catalytic conditions. Yields are reported to be greater than 90% of theoretical (14). [Pg.2]

Ben zotricbl oride is hydrolyzed to benzoic acid by hot water, concentrated sulfuric acid, or dilute aqueous alkaH. Benzoyl chloride [98-88-4] is produced by the reaction of benzotrichloride with an equimolar amount of water or an equivalent of benzoic acid. The reaction is catalyzed by Lewis acids such as ferric chloride and zinc chloride (25). Reaction of benzotrichloride with other organic acids or with anhydrides yields mixtures of benzoyl chloride and the acid chloride derived from the acid or anhydride (26). Benzo triflu oride [98-08-8] is formed by the reaction of benzotrichloride with anhydrous hydrogen fluoride under both Hquid- and vapor-phase reaction conditions. [Pg.59]

Dehydrogenation. The dehydrogenation of ethyl alcohol to acetaldehyde can be effected by a vapor-phase reaction over various catalysts. [Pg.403]

Ethyl Vinyl Ether. The addition of ethanol to acetylene gives ethyl vinyl ether [104-92-2] (351—355). The vapor-phase reaction is generally mn at 1.38—2.07 MPa (13.6—20.4 atm) and temperatures of 160—180°C with alkaline catalysts such as potassium hydroxide and potassium ethoxide. High molecular weight polymers of ethyl vinyl ether are used for pressure-sensitive adhesives, viscosity-index improvers, coatings and films lower molecular weight polymers are plasticizers and resin modifiers. [Pg.416]

Vanadium-Sodium Compounds Most Corrosive. Physical property data for vanadates, phase diagrams, laboratory experiments, and numerous field investigations have shown that the sodium vanadates are the lowest melting compounds and are the most corrosive to metals and refractories. These compounds are thought to form by either the vapor phase reaction of NaCI and V2O5 or by the combination of fine droplets of these materials upon the cooler parts of combustion equipment. [Pg.265]

Table 2). Either vinyl fluoride or 1,1-difluoroethane can be obtained ai the major product from liquid- or vapor-phase reactions. [Pg.58]

The second step is the vapor phase reaction of methylal with isobutene to produce isoprene. [Pg.107]

Methyl chloride is produced by the vapor phase reaction of methanol and hydrogen chloride ... [Pg.154]

Polymer films can also be deposited on solid particles by vapor phase reaction or from a melt. The best example of vapor phase reaction is the deposition of Union Carbide s Parylene ,... [Pg.142]

Nitromethane. The industrial method of producing NM is based on a vapor phase reaction of propane and 70% nitric acid. The reaction is carried out at around 410° and 115—175psi press. In essence the production of NM involves five stepst 1) nitration 2) product recovery ... [Pg.239]

The sudden expansion of the gases, as they are heated in the arc plasma, causes the formation of a high-speed arc jet so that the atomic hydrogen and the reactive carbon species are transported almost instantly to the deposition surface and the chances of hydrogen recombination and of vapor-phase reactions are minimized. [Pg.202]

Vapor-phase reaction of 2,4-C2B5H7 with 7 -CpCo(CO)2 yields l,8-(7j -Cp)2-... [Pg.83]

A third category of syn eliminations involves pyrolytic decomposition of esters with elimination of a carboxylic acid. The pyrolysis of acetate esters normally requires temperatures above 400° C and is usually a vapor phase reaction. In the laboratory this is done by using a glass tube in the heating zone of a small furnace. The vapors of the reactant are swept through the hot chamber by an inert gas and into a cold trap. Similar reactions occur with esters derived from long-chain acids. If the boiling point of the ester is above the decomposition temperature, the reaction can be carried out in the liquid phase, with distillation of the pyrolysis product. [Pg.600]


See other pages where Vapor-phase reaction is mentioned: [Pg.43]    [Pg.44]    [Pg.277]    [Pg.387]    [Pg.186]    [Pg.247]    [Pg.208]    [Pg.348]    [Pg.111]    [Pg.179]    [Pg.43]    [Pg.575]    [Pg.80]   
See also in sourсe #XX -- [ Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 ]




SEARCH



An Alternative Approach Gas-Phase Reaction Between Propene and HP Vapors

CARBON FIBERS FROM VAPOR-PHASE (CVD) REACTION

Catalytic cracking vapor-phase reactions

Chain branching, vapor-phase reactions

Oximes vapor-phase cyclohexanone reaction

Reaction vapor-phase catalytic

Reactions in the Vapor Phase

Reactions vapor phase processes

Silicon carbide vapor-phase reactions

Substrate concentration vapor phase reactions

Temperature vapor phase reactions

Vapor phase catalysts reaction mechanism

Vapor phase oxidation reactions

Vapor-Phase Chemical Reactions

Vapor-Solid Phase Reactions

Vapor-phase hydrogenation reaction

Vapor-phase organic chemical reactions

Vapor-phase reactions combustion

Vapor-phase reactions, irreversible

Vapor-phase silanization reactions

© 2024 chempedia.info