Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical site

FIGURE 1111 Cham propagation in polymerization of styrene The growing polymer chain has a free radical site at the benzylic carbon It adds to a molecule of styrene to extend the chain by one styrene unit The new polymer chain is also a benzylic radical it attacks another molecule of styrene and the process repeats over and over again... [Pg.449]

Radicals from partially hydrogenated heterocycles may be named in two ways in the usual manner, using the appropriate hydro prefix for the parent compound, or by use of the indicated hydrogen convention (italic capital H and locant, enclosed in parentheses). The symbol for the indicated hydrogen must be written immediately following the locant for the radical site, e.g. (163). [Pg.40]

Two radicals in which the radical site is exocyclic should be mentioned. These are the furan (165) and thiophene (166) analogs of the benzyl radical they long ago acquired trivial names, which are recognized by lUPAC because of their widespread use. [Pg.40]

Most organic free radicals have very short lifetimes, but certain structural features enhance stability. Radicals without special stabilization rapidly dimerize or disproportionate. The usual disproportionation process for alkyl radicals involves transfer of a hydrogen from the carbon P to the radical site, leading to formation of an alkane and an alkene ... [Pg.664]

There have been many studies aimed at deducing the geometiy of radical sites by examining the stereochemistry of radical reactions. The most direct kind of study involves the generation of a radical at a carbon which is a stereogenic center. A planar or rapidly inverting radical would lead to racemization, whereas a rigid pyramidal structure should... [Pg.676]

Radicals are particularly strongly stabilized when both an electron-attracting and an electron-donating substituent are present at the radical site. This has been called mero-stabilization" or " capto-dative stabilization. This type of stabilization results from mutual reinforcement of the two substituent effects. Scheme 12.3 gives some information on the stability of this type of radical. [Pg.694]

Similarly, carboxylic acid and ester groups tend to direct chlorination to the / and v positions, because attack at the a position is electronically disfavored. The polar effect is attributed to the fact that the chlorine atom is an electrophilic species, and the relatively electron-poor carbon atom adjacent to an electron-withdrawing group is avoided. The effect of an electron-withdrawing substituent is to decrease the electron density at the potential radical site. Because the chlorine atom is highly reactive, the reaction would be expected to have a very early transition state, and this electrostatic effect predominates over the stabilizing substituent effect on the intermediate. The substituent effect dominates the kinetic selectivity of the reaction, and the relative stability of the radical intermediate has relatively little influence. [Pg.704]

Aryl migrations are promoted by steric crowding in the initial radical site. This trend is illustrated by data from the thermal decomposition of a series of diacyl peroxides. The amount of product derived from rearrangement increases with the size and number of substituents ... [Pg.720]

The bicyclic product is formed by coupling of the two radical sites, while the alkene results from an intramolecular hydrogen-atom transfer. These reactions can be sensitized by aromatic ketones and quenched by typical triplet quenchers and are therefore believed to proceed via triplet excited states. [Pg.762]

In the presence of radical initiators such as benzoyl peroxide (BPO), azobisisobutyronitrile (AIBN), persulfates (S208 ), etc., grafting of vinyl monomers onto polymeric backbones involves generation of free radical sites by hydrogen abstraction and chain transfer processes as described below ... [Pg.483]

Upon photolysis of polypropylene hydroperoxide (PP—OOH) a major absorption at 1726 and 1718 cm has been observed in the IR spectrum, which is attributed to the carbonyl groups. Sometimes the macroradical having free radical site reacts with a neighboring newly born hydroperoxide causing the formation of a macroalkoxy radical [116]. [Pg.493]

The trapped radicals, most of which are presumably polymeric species, have been used to initiate graft copolymerization [127,128]. For this purpose, the irradiated polymer is brought into contact with a monomer that can diffuse into the polymer and thus reach the trapped radical sites. This reaction is assumed to lead almost exclusively to graft copolymer and to very little homopolymer since it can be conducted at low temperature, thus minimizing thermal initiation and chain transfer processes. Moreover, low-molecular weight radicals, which would initiate homopolymerization, are not expected to remain trapped at ordinary temperatures. Accordingly, irradiation at low temperatures increases the grafting yield [129]. [Pg.495]

The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

Generation of radicals by redox reactions has also been applied for synthesizing block copolymers. As was mentioned in Section II. D. (see Scheme 23), Ce(IV) is able to form radical sites in hydroxyl-terminated compounds. Thus, Erim et al. [116] produced a hydroxyl-terminated poly(acrylamid) by thermal polymerization using 4,4-azobis(4-cyano pentanol). The polymer formed was in a second step treated with ceric (IV) ammonium nitrate, hence generating oxygen centered radicals capable of starting a second free radical polymeriza-... [Pg.751]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Some physical techniques can be classified into flame treatments, corona treatments, cold plasma treatments, ultraviolet (UV) treatment, laser treatments, x-ray treatments, electron-beam treatments, ion-beam treatments, and metallization and sputtering, in which corona, plasma, and laser treatments are the most commonly used methods to modify silicone polymers. In the presence of oxygen, high-energy-photon treatment induces the formation of radical sites at surfaces these sites then react with atmospheric oxygen forming oxygenated functions. [Pg.243]

A number of methods have been used to prepare graft copolymers in the past few decades including both conventional chemical and radiation-chemical methods [20,86,87]. In the latter case, graft copolymerization is usually initiated by creating active radical sites on existing polymer chains. The advantages of radiation-chemical methods are (i) ease of preparation as compared to... [Pg.867]

Chain polymerization involves three steps. To start the reaction, a catalyst that can generate an active site, such as a free radical (R ), is used. In the initiation step, the radical adds to the double bond, and the radical site is moved to the end carbon. This new radical reacts with another molecule to give a larger radical, and the propagation reaction is imderway. Usually, the number of monomers in the chain is greater than 1000. In the above formulae. [Pg.106]

Mixtures of two or more monomers can polymerize to form copolymers. Many copolymers have been developed to combine the best features of each monomer. For example, poly(vinyl chloride) (called a homopolymer because it is made from a single monomers) is brittle. By copolymerizing vinyl chloride with vinyl acetate, a copolymer is obtained that is flexible. Arrangement of the monomer units in a copolymer depends on the rates at which the monomers react with each other. Graft copolymers are formed when a monomer is initiated by free radical sites created on an already-formed polymer chain. [Pg.109]

In this section we focus on intramolecular functionalization. Such reactions normally achieve selectivity on the basis of proximity of the reacting centers. In acyclic molecules, intramolecular functionalization normally involves hydrogen atom abstraction via a six-membered cyclic TS. The net result is introduction of functionality at the S-atom in relation to the radical site. [Pg.989]

There is another mechanistic variation to circumvent the direct cleavage process 11- 12. The isomerization 11- 13 does not necessarily have to involve a skeletal reorganization. For example, it can be envisaged that a specific hydrogen transfer occurs onto a suitable acceptor function Y, 24- 25 (5). In this way a reactive radical site is created which induces the dissociation step (elimination of X ) by... [Pg.8]


See other pages where Radical site is mentioned: [Pg.1591]    [Pg.170]    [Pg.230]    [Pg.268]    [Pg.374]    [Pg.226]    [Pg.677]    [Pg.692]    [Pg.702]    [Pg.546]    [Pg.401]    [Pg.504]    [Pg.531]    [Pg.735]    [Pg.323]    [Pg.1212]    [Pg.535]    [Pg.171]    [Pg.223]    [Pg.869]    [Pg.63]    [Pg.5]    [Pg.492]    [Pg.535]    [Pg.983]    [Pg.306]    [Pg.310]    [Pg.421]    [Pg.335]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



© 2024 chempedia.info