Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin industry reinforcements

The materials being reviewed in this book, as in the industry, are identified by different terms such as polymer, plastic, resin, elastomer, reinforced plastic (RP), and composite unreinforced or reinforced plastic. They are somewhat synonymous. Polymers, the basic ingredients in plastics, can be defined as high molecular weight organic chemical compounds, synthetic or natural substances consisting of molecules. Practically all of these polymers are compounded with other products (additives, fillers, reinforcements, etc.) to provide many different properties and/or processing capabilities. Thus plastics is the correct technical term to use except in very few applications where only the polymer is used to fabricate products. [Pg.9]

CAS 250384)44) 90529-77-4 EINECS/ELINCS 2924)11-4 Uses Crosslinking reagenL adhesion promoter for fiber coatings reactive diluent with other polymers, in solv.-free coating systems, laminating resins, fiber-reinforc composites, coating of tech, polyester and Aramide fibers (as textile reinforcement in tires, conveyor belts) in the fiber, mbber and polymer industry Trade Names GE100... [Pg.1131]

Uses Thermoset resin for reinforced plastics, automotive parts, protective coatings, ducts, housings, flues, laminates, pipes, terrazzo tiles, cultured marble sinks, spas vehicle for pigment grinding binder in industrial flooring/coatings in food-contact coatings... [Pg.3468]

Primary business activities are based on the applications of structural composites as the business product. Secondary business activities serve the needs of the primary industries, often as suppliers of raw materials. A third level of business activity involves providing basic and specialized training for the use of structural composites in specific applications and markets. As an example, the primary industry might be an aircraft manufecturer or a construction engineering firm, the secondary industry could then be a cement suppher or a resin and reinforcement fiber manufacturer, and the tertiary industry could be an organization that provides training in the use of advanced composite materials for aircraft maintenance workers or in the use of concrete and paving blends. In a very real sense, the opportunity for an individual s success in this field is as limitless as the opportunities for new developments and applications of the materials. [Pg.1762]

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

Corrosion Resistant Fiber-Reinforced Plastic (FRP). Fiber glass reinforcement bonded with furfuryl alcohol thermosetting resias provides plastics with unique properties. Excellent resistance to corrosion and heat distortion coupled with low flame spread and low smoke emission are characteristics that make them valuable as laminating resins with fiber glass (75,76). Another valuable property of furan FRP is its strength at elevated temperature. Hand-layup, spray-up, and filament-win ding techniques are employed to produce an array of corrosion-resistant equipment, pipes, tanks, vats, ducts, scmbbers, stacks, and reaction vessels for industrial appHcations throughout the world. [Pg.81]

The most commonly used reinforcement for high pressure decorative and industrial laminates is paper (qv). The strong substrate layers, or filler, are kraft paper. Kraft is a brown paper made from a sulfate pulp process (8). It consists of both short cellulose fibers from hardwoods and long fibers from conifers. The long fibers impart most of the wet strength required for resin saturation processes. [Pg.532]

Composites. The history of phenoHc resin composites goes back to the early development of phenoHc materials, when wood flour, minerals, and colorants were combined with phenoHc resins to produce mol ding compounds. In later appHcations, resin varnishes were developed for kraft paper and textile fabrics to make decorative and industrial laminates. Although phenoHcs have been well characterized in glass-reinforced composites, new developments continue in this area, such as new systems for Hquid-injection molding (LIM) and sheet-molding compounds (SMC). More compHcated composite systems are based on aramid and graphite fibers. [Pg.307]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

The main characteristic properties of asbestos fibers that can be exploited in industrial appHcations (8) are their thermal, electrical, and sound insulation nonflammabiUty matrix reinforcement (cement, plastic, and resins) adsorption capacity (filtration, Hquid sterilization) wear and friction properties (friction materials) and chemical inertia (except in acids). These properties have led to several main classes of industrial products or appHcations... [Pg.354]

Asbestos fibers have likewise been used in reinforcement of plastics such as poly(vinyl chloride), phenoHcs, polypropylene, nylon, etc. Reinforcement of both thermoset and thermoplastic resins by asbestos fibers has been practiced to develop products for the automotive, electronic, and printing industries. [Pg.354]

Boron filaments are formed by the chemical vapor deposition of boron trichloride on tungsten wire. High performance reinforcing boron fibers are available from 10—20 mm in diameter. These are used mainly in epoxy resins and aluminum and titanium. Commercial uses include golf club shafts, tennis and squash racquets, and fishing rods. The primary use is in the aerospace industry. [Pg.184]

Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

Occupational and environmental exposure to chemicals can take place both indoors and outdoors. Occupational exposure is caused by the chemicals that are used and produced indoors in industrial plants, whereas nonoccupa-tional (and occupational nonindustrial) indoor exposure is mainly caused by products. Toluene in printing plants and styrene in the reinforced plastic industry are typical examples of the two types of industrial occupational exposures. Products containing styrene polymers may release the styrene monomer into indoor air in the nonindustrial environment for a long time. Formaldehyde is another typical indoor pollutant. The source of formaldehyde is the resins used in the production process. During accidents, occupational and environmental exposures may occur simultaneously. Years ago, dioxin was formed as a byproduct of production of phenoxy acid herbicides. An explosion in a factory in... [Pg.255]

Maleic anhydride is important as a chemical hecause it polymerizes with other monomers while retaining the double bond, as in unsaturated polyester resins. These resins, which represent the largest end use of maleic anhydride, are employed primarily in fiber-reinforced plastics for the construction, marine, and transportation industries. Maleic anhydride can also modify drying oils such as linseed and sunflower. [Pg.243]


See other pages where Resin industry reinforcements is mentioned: [Pg.197]    [Pg.336]    [Pg.699]    [Pg.197]    [Pg.197]    [Pg.699]    [Pg.201]    [Pg.383]    [Pg.1293]    [Pg.70]    [Pg.365]    [Pg.66]    [Pg.290]    [Pg.253]    [Pg.151]    [Pg.267]    [Pg.142]    [Pg.201]    [Pg.508]    [Pg.186]    [Pg.368]    [Pg.358]    [Pg.532]    [Pg.144]    [Pg.321]    [Pg.3]    [Pg.18]    [Pg.19]    [Pg.35]    [Pg.490]    [Pg.266]    [Pg.267]    [Pg.274]    [Pg.371]    [Pg.582]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Reinforcement resin

Resin industry

Resin industry industrial

© 2024 chempedia.info