Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HEAT DISTORTION

Corrosion Resistant Fiber-Reinforced Plastic (FRP). Fiber glass reinforcement bonded with furfuryl alcohol thermosetting resias provides plastics with unique properties. Excellent resistance to corrosion and heat distortion coupled with low flame spread and low smoke emission are characteristics that make them valuable as laminating resins with fiber glass (75,76). Another valuable property of furan FRP is its strength at elevated temperature. Hand-layup, spray-up, and filament-win ding techniques are employed to produce an array of corrosion-resistant equipment, pipes, tanks, vats, ducts, scmbbers, stacks, and reaction vessels for industrial appHcations throughout the world. [Pg.81]

SAN resins possess many physical properties desked for thermoplastic appHcations. They are characteristically hard, rigid, and dimensionally stable with load bearing capabiHties. They are also transparent, have high heat distortion temperatures, possess exceUent gloss and chemical resistance, and adapt easily to conventional thermoplastic fabrication techniques (7). [Pg.191]

AN, wt % Tensile strength, MPa Elongation, % Impact strength, J/m notch Heat distortion, temp., °C Solution viscosity, mPa-s (=cP)... [Pg.192]

Table 1. Material Properties of General Purpose and Heat Distortion Resistant ABS ... Table 1. Material Properties of General Purpose and Heat Distortion Resistant ABS ...
Nylon-6. Nylon-6—clay nanometer composites using montmorillonite clay intercalated with 12-aminolauric acid have been produced (37,38). When mixed with S-caprolactam and polymerized at 100°C for 30 min, a nylon clay—hybrid (NCH) was produced. Transmission electron microscopy (tern) and x-ray diffraction of the NCH confirm both the intercalation and molecular level of mixing between the two phases. The benefits of such materials over ordinary nylon-6 or nonmolecularly mixed, clay-reinforced nylon-6 include increased heat distortion temperature, elastic modulus, tensile strength, and dynamic elastic modulus throughout the —150 to 250°C temperature range. [Pg.329]

The first HFIP-based polycarbonate was synthesi2ed from bisphenol AF with a nonfluorkiated aromatic diol (bisphenol A) and phosgene (121,122). Incorporation of about 2—6% of bisphenol AF and bisphenol A polycarbonate improved the dimensional stabkity and heat-distortion properties over bisphenol A homopolycarbonate. Later developments in this area concern the flame-retardant properties of these polymers (123,124). [Pg.539]

Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass. Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass.
Because the heat distortion temperature of cured epoxy resins (qv) increases with the functionality of the curing agents, pyromellitic dianhydride is used to cross-link epoxy resins for elevated temperature service. The dianhydride may be added as a dispersion of micropulverized powder in liquid epoxy resin or as a glycol adduct (158). Such epoxies may be used as an insulating layer in printed circuit boards to improve heat resistance (159). Other uses include inhibition of corrosion (160,161), hot melt traffic paints (162), azo pigments (163), adhesives (164), and photoresist compounds (165). [Pg.500]

Film or fibers derived from low molecular weight polymer tend to embrittle on immersion ia acetone those based on higher molecular weight polymer (>0.60 dL/g) become opaque, dilated, and elastomeric. When a dilated sample is stretched and dried, it retains orientation and is crystalline, exhibiting enhanced tensile strength. The tensile heat-distortion temperature of the crystalline film is iacreased by about 20°C, and the gas permeabiUty and resistance to solvent attack is iacreased. [Pg.280]

For all three diallyl phthalate isomers, gelation occurs at nearly the same conversion DAP prepolymer contains fewer reactive allyl groups than the other isomeric prepolymers (36). More double bonds are lost by cyclisation in DAP polymerisation, but this does not affect gelation. The heat-distortion temperature of cross-linked DAP polymer is influenced by the initiator chosen and its concentration (37). Heat resistance is increased by electron beam irradiation. [Pg.84]

Copolymers of diallyl itaconate [2767-99-9] with AJ-vinylpyrrolidinone and styrene have been proposed as oxygen-permeable contact lenses (qv) (77). Reactivity ratios have been studied ia the copolymerization of diallyl tartrate (78). A lens of a high refractive iadex n- = 1.63) and a heat distortion above 280°C has been reported for diallyl 2,6-naphthalene dicarboxylate [51223-57-5] (79). Diallyl chlorendate [3232-62-0] polymerized ia the presence of di-/-butyl peroxide gives a lens with a refractive iadex of n = 1.57 (80). Hardness as high as Rockwell 150 is obtained by polymerization of triaHyl trimeUitate [2694-54-4] initiated by benzoyl peroxide (81). [Pg.87]

Reinforced Thermoplastic Sheet. This process uses precombined sheets of thermoplastic resin and glass fiber reinforcement, cut into blanks to fit the weight and size requirements of the part to be molded. The blanks, preheated to a specified temperature, are loaded into the metal mold and the material flows under mol ding pressure to fiU the mold. The mold is kept closed under pressure until the temperature of the part has been reduced, the resin solidified, and demolding is possible. Cycle time, as with thermosetting resins, depends on the thickness of the part and the heat distortion temperature of the resin. Mol ding pressures are similar to SMC, 10—21 MPa (1500—3000 psi), depending on the size and complexity of the part. [Pg.96]

The effects of release additives on bulk properties must also be carefully considered, particularly with integral additives to plastics. Eor example, partial solubiHty usually confers some plastici2ing effect. This may improve impact strength but could reduce the heat distortion temperature. Some release additives such as metallic soaps have secondary antioxidant and heat-stabiH2er benefits. Such effects are exploited in multipurpose formulations. [Pg.99]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

Four modes of characterization are of interest chemical analyses, ie, quaUtative and quantitative analyses of all components mechanical characterization, ie, tensile and impact testing morphology of the mbber phase and rheology at a range of shear rates. Other properties measured are stress crack resistance, heat distortion temperatures, flammabiUty, creep, etc, depending on the particular appHcation (239). [Pg.525]


See other pages where HEAT DISTORTION is mentioned: [Pg.465]    [Pg.360]    [Pg.415]    [Pg.156]    [Pg.327]    [Pg.407]    [Pg.134]    [Pg.270]    [Pg.405]    [Pg.408]    [Pg.409]    [Pg.420]    [Pg.427]    [Pg.531]    [Pg.307]    [Pg.494]    [Pg.281]    [Pg.297]    [Pg.320]    [Pg.331]    [Pg.334]    [Pg.368]    [Pg.421]    [Pg.422]    [Pg.423]    [Pg.423]    [Pg.434]    [Pg.66]    [Pg.69]    [Pg.83]    [Pg.87]    [Pg.490]    [Pg.505]    [Pg.507]    [Pg.524]    [Pg.526]   
See also in sourсe #XX -- [ Pg.15 , Pg.212 ]




SEARCH



Distorted linear heating

HEAT DISTORTION TEMPERATURE

Hardness heat distortion temperature

Heat Distortion Improving Agents

Heat Distortion Temperature Modification

Heat Distortion Temperature at 0.45 MPa (C)

Heat deflection/distortion temperature

Heat deflection/distortion temperature softening point

Heat distortion polyester resin

Heat distortion temperature , glass

Heat distortion temperature , glass transition

Heat distortion temperature High melt strength

Heat distortion temperature at 0.45 Mpa

Heat distortion temperature data

Heat distortion temperature epoxies

Heat distortion temperature polyesters

Heat distortion temperature test

Heat distortion temperature, HDT

High-heat distortion grade blends

Low heat distortion temperature

Poly heat distortion temperature

Polyarylates heat distortion temperature

Reinforced thermoplastics, heat distortion

Tensile heat distortion temperatures

Testing flexural heat distortion temperature

Testing, 326: heat distortion temperature

Thermal properties heat distortion temperature

© 2024 chempedia.info