Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quality control protocol accuracy

While methods validation and accuracy testing considerations presented here have been frequently discussed in the literature, they have been included here to emphasize their importance in the design of a total quality control protocol. The Youden two sample quality control scheme has been adapted for continuous analytical performance surveillance. Methods for graphical display of systematic and random error patterns have been presented with simulated performance data. Daily examination of the T, D, and Q quality control plots may be used to assess analytical performance. Once identified, patterns in the quality control plots can be used to assist in the diagnosis of a problem. Patterns of behavior in the systematic error contribution are more frequent and easy to diagnose. However, pattern complications in both error domains are observed and simultaneous events in both T and D plots can help to isolate the problems. Point-by-point comparisons of T and D plots should be made daily (immediately after the data are generated). Early detection of abnormal behavior reduces the possibility that large numbers of samples will require reanalysis. [Pg.269]

Boomer and Powell [242] have developed an analytical technique using inductively coupled plasma mass spectrometry to estimate the concentration of uranium in a variety of environmental samples including soil. The lower limit for quantitation is 0.1 ng/ml. Calibration is linear from the low limit to 100 ng/ml. Precision, accuracy and a quality control protocol were established. Results are compared with those obtained by the conventional fluorometric method. [Pg.58]

The establishment of performance criteria for a given tumor marker test is not a simple process because accuracy and precision are unique for each type of analyte and its application. Establishing methodological limits for accuracy, precision, sensitivity, and specificity often requires standard reference materials, quality control materials, comparative studies, and actual clinical specimens. Accuracy and precision must be measured over the analyte reportable range for which the device is intended to be used. Sensitivity and specificity must be considered with respect to the intended clinical use of the device. Also, the indications for use should be carefully considered in the design of the study protocol. The indications for class II should be to monitor residual tumor after surgery (or radiation), the recurrence of tumor, or response to therapy. A 510(k) must provide clear evidence that the device is accurate, safe, effective, and substantially equivalent to a device legally marketed in the United States. [Pg.176]

The protocol sets out guidelines for the implementation of internal quality control (IQC) in analytical laboratories. IQC is one of a number of concerted measures that analytical chemists can take to ensure that the data produced in the laboratory are fit for their intended purpose. In practice, fitness for purpose is determined by a comparison of the accuracy achieved in a laboratory at a given time with a required level of accuracy. Internal quality control therefore comprises the routine practical procedures that enable the analytical chemist to accept a result or group of results as fit-for-purpose, or... [Pg.85]

Examples of quality assurance protocols that are considered standard practice in any data collection scheme include the use of both internal control samples (e.g. use of field blanks and spikes6) and external quality assurance samples (e.g. duplicate samples of known concentrations sent to different laboratories) to determine the extent of intra- and interlaboratory variation. Ensuring that the data have not been compromised or corrupted may also require setting up accessible data archives of original paper or electronic records so that the accuracy of summaries of the data published in documents and articles can be verified. [Pg.152]

This trend toward increases in automation has a number of collateral effects. In laboratories in which protocols are standardized automated systems can increase accuracy, decrease personnel costs, and enhance quality control (QC). Computerized systems are generally immune from the small slippages of attention and care that result in minor but sometimes cascading human errors through the boredom of repetitive tasks. On the other hand, computers are prone to much more spectacular errors—for example, to one-ofif recording of test results from a long line of samples. But while these errors are dramatic in scope, with effective QC efforts they are generally detectable and hence correctable. The insidious minor corruptions produced by humans are much more likely to continue undetected. [Pg.261]

As an analytical approach to residue analysis, immunoassay methods are not well characterized, and no validation protocols have been established. The Association of Official Analytical Chemists, whose primary purpose is validation of analytical methods, established a Task Force on Test Kits and Proprietary Methods (2), which has addressed some of the issues relating to immunoassay methods. The International Union of Pure and Applied Chemistry s Commission on Food Chemistry has established a Working Group on Immunochemical Methods, whose first project is to develop draft guidelines on criteria for evaluation, validation, and quality control for r o-immunoassay methods (10). Similar guidelines for EIAs will also be developed. These documents will assist in development and standardization of requirements for precision for both between-laboratories and within-laboratory andyses, accuracy, and ruggedness, and— for qualitative methods— false positive and false negative rates. [Pg.52]

A variety of measurement methods have been developed for determining the water activity of food materials and are well described in texts such as Rahman (1995), Wiederhold (1997), and Bell and Labuza (2000). In general, water activity is a relatively easy parameter to measure, which can be an advantage, especially for use in the food industry. Depending on the technique selected, the water activity of a food material can be measured in a time frame of minutes (e.g., electronic instrument). In addition, individuals can be trained, with a limited amount of instruction, to make water activity measurements. Consequently, when appropriate, water activity measurements can be made relatively quickly by personnel overseeing a manufacturing line for quality assurance purposes. Measurement protocols, such as calibration procedures and proper temperature control, should be implemented to assure the accuracy of online c/w measurements. [Pg.36]

The ability to provide accurate and reliable data is central to the role of analytical chemists, not only in areas like the development and manufacture of drugs, food control or drinking water analysis, but also in the field of environmental chemistry, where there is an increasing need for certified laboratories (ISO 9000 standards). The quality of analytical data is a key factor in successfully identifying and monitoring contamination of environmental compartments. In this context, a large collection of methods applied to the routine analysis of prime environmental pollutants has been developed and validated, and adapted in nationally or internationally harmonised protocols (DIN, EPA). Information on method performance generally provides data on specificity, accuracy, precision (repeatability and reproducibility), limit of detection, sensitivity, applicability and practicability, as appropriate. [Pg.538]

The success of an optical measurement will be controlled by the quality of the optical components that make up the instrument, and the accuracy of their alignment. For this reason, Chapter 9 is devoted to the selection of specific components to accomplish a required task. Since such a decision is influenced by the construction of an element, the underlying physics and design criteria used in the manufacture of optical components are presented. This discussion is combined with alignment protocols that the author and his students have found useful in their own laboratory. [Pg.277]


See other pages where Quality control protocol accuracy is mentioned: [Pg.259]    [Pg.457]    [Pg.527]    [Pg.9]    [Pg.179]    [Pg.252]    [Pg.12]    [Pg.527]    [Pg.398]    [Pg.267]    [Pg.18]    [Pg.269]    [Pg.446]    [Pg.608]    [Pg.834]    [Pg.3]    [Pg.145]    [Pg.3585]   
See also in sourсe #XX -- [ Pg.252 , Pg.254 ]




SEARCH



Quality control protocol

Quality protocols

© 2024 chempedia.info