Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonates flame retardants

Polycarbonate, flame-retarded Polyurethane, TDI + ether poliol Polyurethane, TDI + ester poliol... [Pg.292]

Blending two or more polymers offers yet another method of tailoring resins to a specific application. Because blends are only physical mixtures, the resulting polymer usually has physical and mechanical properties that lie somewhere between the values of its constituent materials. For instance, an automotive bumper made from a blend of polycarbonate resin and thermoplastic polyurethane elastomer gains rigidity from the polycarbonate resin and retains most of the flexibility and paintability of the polyurethane elastomer. For business machine housings, a blend of polycarbonate and acrylonitrile-butadiene-styrene (ABS) copolymer resins offers the enhanced performance of polycarbonate flame retardance and ultraviolet (UV) stability at a lower cost. [Pg.56]

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

Triphenyl phosphate [115-86-6] C gH O P, is a colorless soHd, mp 48—49°C, usually produced in the form of flakes or shipped in heated vessels as a hquid. An early appHcation was as a flame retardant for cellulose acetate safety film. It is also used in cellulose nitrate, various coatings, triacetate film and sheet, and rigid urethane foam. It has been used as a flame-retardant additive for engineering thermoplastics such as polyphenylene oxide—high impact polystyrene and ABS—polycarbonate blends. [Pg.478]

Usage of phosphoms-based flame retardants for 1994 in the United States has been projected to be 150 million (168). The largest volume use maybe in plasticized vinyl. Other use areas for phosphoms flame retardants are flexible urethane foams, polyester resins and other thermoset resins, adhesives, textiles, polycarbonate—ABS blends, and some other thermoplastics. Development efforts are well advanced to find appHcations for phosphoms flame retardants, especially ammonium polyphosphate combinations, in polyolefins, and red phosphoms in nylons. Interest is strong in finding phosphoms-based alternatives to those halogen-containing systems which have encountered environmental opposition, especially in Europe. [Pg.481]

The first HFIP-based polycarbonate was synthesi2ed from bisphenol AF with a nonfluorkiated aromatic diol (bisphenol A) and phosgene (121,122). Incorporation of about 2—6% of bisphenol AF and bisphenol A polycarbonate improved the dimensional stabkity and heat-distortion properties over bisphenol A homopolycarbonate. Later developments in this area concern the flame-retardant properties of these polymers (123,124). [Pg.539]

Polycarbonates are prepared commercially by two processes Schotten-Baumaim reaction of phosgene (qv) and an aromatic diol in an amine-cataly2ed interfacial condensation reaction or via base-cataly2ed transesterification of a bisphenol with a monomeric carbonate. Important products are also based on polycarbonate in blends with other materials, copolymers, branched resins, flame-retardant compositions, foams (qv), and other materials (see Flame retardants). Polycarbonate is produced globally by several companies. Total manufacture is over 1 million tons aimuaHy. Polycarbonate is also the object of academic research studies, owing to its widespread utiUty and unusual properties. Interest in polycarbonates has steadily increased since 1984. Over 4500 pubflcations and over 9000 patents have appeared on polycarbonate. Japan has issued 5654 polycarbonate patents since 1984 Europe, 1348 United States, 777 Germany, 623 France, 30 and other countries, 231. [Pg.278]

Minor and potential new uses include flue-gas desulfurization (44,45), silver-cleaning formulations (46), thermal-energy storage (47), cyanide antidote (48), cement additive (49), aluminum-etching solutions (50), removal of nitrogen dioxide from flue gas (51), concrete-set accelerator (52), stabilizer for acrylamide polymers (53), extreme pressure additives for lubricants (54), multiple-use heating pads (55), in soap and shampoo compositions (56), and as a flame retardant in polycarbonate compositions (57). Moreover, precious metals can be recovered from difficult ores using thiosulfates (58). Use of thiosulfates avoids the environmentally hazardous cyanides. [Pg.30]

Bromine compounds are often used as flame retardant additives but 15-20ptsphr may be required. This is not only expensive but such large levels lead to a serious loss of toughness. Of the bromine compounds, octabromo-diphenyl ether has been particularly widely used. However, recent concern about the possibility of toxic decomposition products and the difficulty of finding alternative flame retarders for ABS has led to the loss of ABS in some markets where fire retardance is important. Some of this market has been taken up by ABS/PVC and ASA/PVC blends and some by systems based on ABS or ASA (see Section 16.9) with polycarbonates. Better levels of toughness may be achieved by the use of ABS/PVC blends but the presence of the PVC lowers the processing stability. [Pg.444]

Blends of ABS with polycarbonates have been available for several years (e.g. Bayblend by Bayer and Cycoloy by Borg-Wamer). In many respects these polymers have properties intermediate to the parent plastics materials with heat distortion temperatures up to 130°C. They also show good impact strength, particularly at low temperatures. Self-extinguishing and flame retarding grades have been made available. The materials thus provide possible alternatives to modified poly(phenylene oxides) of the Noryl type described in Chapter 21. (See also sections 16.16 and 20.8.)... [Pg.446]

Phosphorus -bromine flame retardant synergy was demonstrated in a 2/1 polycarbonate/polyethylene blend. These data also show phosphorus to be about ten times more effective than bromine in this blend. Brominated phosphates, where both bromine and phosphorus are in the same molecule, were also studied. In at least one case, synergy is further enhanced when both phosphorus and bromine are in the same molecule as compared with a physical blend of a phosphorus and a bromine compound. On a weight basis, phosphorus and bromine in the same molecule are perhaps the most efficient flame retardant combination. The effect of adding an impact modifier was also shown. [Pg.341]

Convincing evidence for phosphorus/bromine synergy has now been found in a 2/1 polycarbonate/polyethylene terephthalate blend. Phosphorus and bromine blends were studied as well as compounds which have both elements in the same compound. The relative flame retardant efficiencies of phosphorus and bromine are also reported. [Pg.342]

Table 4. Flame Retarding 3/1 Polycarbonate / ABS with 10 % Flame Retardant / 0.5 % Teflon 6C ... [Pg.344]

A 2/1 blend of polycarbonate and polyethylene terephthalate (PC/PET) was flame retarded with bromine, phosphorus, a blend of bromine and phosphorus, and compounds containing both phosphorus and bromine in the same molecule. All compositions contained 0.5 % Teflon 6C as a drip inhibitor and where specified 5 % of an impact modifier. [Pg.345]

Table 6 shows the flamability characteristics of an impact modified 2/1 polycarbonate/PET blend containing 6 % of the various flame retardants. The composition containing the brominated phosphate 60/4 is the only one which is V-0 by the UL-94 vertical burn test. At 10 % add-on, the all-bromine containing resin is V-1 and at 13 % add-on the all-phophorus containing resin is V-0. [Pg.353]

Table 6. Flame Retarding Impact Modified 2/1 Polycarbonate/PET Blend... Table 6. Flame Retarding Impact Modified 2/1 Polycarbonate/PET Blend...
Houben [256] has compared the determination of flame-retardant elements Br, P, S, K, Cl and F in polycarbonate using commercial (X40 and UniQuant ) software. For the X40 method, a calibration line for each element in PC or PC/ABS blends was mapped for the conversion of intensities to concentrations. With the universal UniQuant method, sensitivity factors (ks) were calibrated with pure standards. The X40 method turned out to be more reliable than UniQuant for the determination of FRs in PC and PC/ABS blends, even in the case of calibration of k values with PC standards. Standard errors of 5 % were achieved for Br, P, S and K, and 20% for Cl and F the latter element could not be determined by means of UniQuant (Table 8.44). GFR PC cannot be quantified with these two methods, because of the heterogeneous nature of the composites. Other difficult matrices for XRF analysis are PBT, PS and PP compounds containing both BFRs and Sb203 (10-30wt %) due to self-absorption of Sb and interelement effects. [Pg.635]

Polytetrafluoroethylene has an oxygen index of 95%, and is relatively impervious to gases. The use of a low level of finely divided PTFE as an antidripping additive in flame retardant polycarbonates is described in the patent literature, and is in commercial use (41). [Pg.106]

Blends of flame retardant additives have been advocated as an approach to an optimum balance of properties in the finished products. For example, blends of tetrabromophthalate esters with de-cabromodiphenyl oxide or other flame retardants are reported to yield a V-0 rating in modified PPO and in polycarbonate resins without compromising melt processability or performance properties (23a-b). [Pg.245]

Table III. Selected Dow Chemical Patents on Flame Retardants for Polycarbonates... Table III. Selected Dow Chemical Patents on Flame Retardants for Polycarbonates...
An example of a direct comparison of performance properties with and without added flame retardants for "New ignition resistant polycarbonate resins" is provided in a paper by workers at the Dow Chemical Company (32). The technology of the flame retardant additives is de scribed as including... [Pg.249]

Illustrative performance properties for a "general purpose polycarbonate," and for the same resin modified with the additive formulations "700" (without PTFE) and "800" (with PTFE) are summarized in Table IV (adapted from reference 32). It is clear that the objective of minimal effect on performance properties has been attained for this system. It is evident that flame retardant effectiveness attained with minimal levels of additive can provide optimum solutions to the problem of decreasing flammability without sacrifice in performance properties. Work documented to date suggests that in depth studies of thermal degradation such as reported for aromatic sulfonates in polycarbonates (28) would be rewarding for other systems. [Pg.249]

We previously reported that brominated aromatic phosphate esters are highly effective flame retardants for polymers containing oxygen such as polycarbonates and polyesters (9). Data were reported for use of this phosphate ester in polycarbonates, polyesters and blends. In some polymer systems, antimony oxide or sodium antimonate could be deleted. This paper is a continuation of that work and expands into polycarbonate alloys with polybutylene terephthalate (PBT), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene (ABS). [Pg.255]

Three flame retardants were compared in this study, namely, a brominated polycarbonate oligomer (58% bromine), a brominated polystyrene (68% bromine), and a brominated triaryl phosphate ester (60% bromine plus 4% phosphorus). These are described in Table I. Figures 1 and 2 compare the thermal stability of the brominated phosphate with commercial bromine-containing flame retardants by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). The brominated phosphate melts at 110°C and shows a 1% weight loss at 300°C. Brominated polycarbonate and brominated polystyrene are polymeric and are not as volatile at elevated temperatures as the monomeric flame retardants. [Pg.255]

The brominated phosphate is an efficient flame retardant for polycarbonate resin. UL-94 ratings of V-0 with oxygen index values of greater than 40 are obtained. Polycarbonate resin containing brominated phosphate processes with greater ease than resin containing brominated polycarbonate as measured by injection molding spiral flow measurements. The heat distortion temperature is reduced... [Pg.255]


See other pages where Polycarbonates flame retardants is mentioned: [Pg.249]    [Pg.249]    [Pg.478]    [Pg.478]    [Pg.167]    [Pg.68]    [Pg.281]    [Pg.300]    [Pg.107]    [Pg.573]    [Pg.73]    [Pg.342]    [Pg.343]    [Pg.344]    [Pg.345]    [Pg.350]    [Pg.352]    [Pg.241]    [Pg.248]    [Pg.248]    [Pg.253]    [Pg.255]    [Pg.256]   
See also in sourсe #XX -- [ Pg.122 , Pg.135 ]




SEARCH



© 2024 chempedia.info