Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer noncharring

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

Physical or chemical vapor-phase mechanisms may be reasonably hypothesized in cases where a phosphoms flame retardant is found to be effective in a noncharring polymer, and especially where the flame retardant or phosphoms-containing breakdown products are capable of being vaporized at the temperature of the pyrolyzing surface. In the engineering of thermoplastic Noryl (General Electric), which consists of a blend of a charrable poly(phenylene oxide) and a poorly charrable polystyrene, experimental evidence indicates that effective flame retardants such as triphenyl phosphate act in the vapor phase to suppress the flammabiUty of the polystyrene pyrolysis products (36). [Pg.475]

In this form, the energy needed to break the original polymer bonds to cause unzipping or volatilization with char is closer to values representative of noncharring solid polymers. Table 9.1 gives some representative values found for the heats of gasification. [Pg.232]

Figures 15.8 and 15.9 illustrate examples of how cone calorimeter data can be used in the development of flame-retarded materials. PA 66-GF without Pred showed typical fire behavior for noncharring polymers containing inorganic glass fiber as inert filler,69 when high external heat flux is applied. The shape of the HRR curve is divided in two different parts. In the beginning, the surface layer pyrolysis shows a sharp peak, followed by a reduced pyrolysis rate when the pyrolysis zone is covered by the glass fiber network residue layer. When Pred was added, the PA 66-GF samples were transformed into carbonaceous char-forming materials, which led to a... Figures 15.8 and 15.9 illustrate examples of how cone calorimeter data can be used in the development of flame-retarded materials. PA 66-GF without Pred showed typical fire behavior for noncharring polymers containing inorganic glass fiber as inert filler,69 when high external heat flux is applied. The shape of the HRR curve is divided in two different parts. In the beginning, the surface layer pyrolysis shows a sharp peak, followed by a reduced pyrolysis rate when the pyrolysis zone is covered by the glass fiber network residue layer. When Pred was added, the PA 66-GF samples were transformed into carbonaceous char-forming materials, which led to a...
Temperature profiles can be determined from the transient heat conduction equation or, in integral models, by assuming some functional form of the temperature profile a priori. With the former, numerical solution of partial differential equations is required. With the latter, the problem is reduced to a set of coupled ordinary differential equations, but numerical solution is still required. The following equations embody a simple heat transfer limited pyrolysis model for a noncharring polymer that is opaque to thermal radiation and has a density that does not depend on temperature. For simplicity, surface regression (which gives rise to convective terms) is not explicitly included. [Pg.565]


See other pages where Polymer noncharring is mentioned: [Pg.402]    [Pg.567]    [Pg.567]    [Pg.746]    [Pg.198]    [Pg.3245]    [Pg.3259]    [Pg.263]    [Pg.263]    [Pg.265]    [Pg.265]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.227]    [Pg.483]    [Pg.496]    [Pg.498]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



© 2024 chempedia.info