Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethanes flame retardants

Uses Color stabilizer for foamed polyurethanes flame retardant for flame... [Pg.1977]

Polyurethane Flame retardant Comments on flame retardancy Reference... [Pg.90]

Vircol (Series), Reactive polyurethane flame retardants, Albright Wilson Americas Virgaloy, PC/PMMA blend, MRC Polymers Inc. Virtual Gibbs, CAM software, Gibbs and Associates... [Pg.945]

Pentabromodiphenyl Oxide. Pentabromodiphenyl oxide [32534-81-9] (PBDPO) is prepared from diphenyl oxide by bromiaation (36). It is primarily used as a flame retardant for flexible polyurethane foams. For this appHcation PBDPO is sold as a blend with a triaryl phosphate. Its primary benefit ia flexible polyurethanes is superior thermal stabiUty, ie, scorch resistance, compared to chloroalkyl phosphates (see Phosphate esters). [Pg.468]

Diester/Ether Diol of Tetrabromophthalic Anhydride. This material [77098-07-8] is prepared from TBPA in a two-step reaction. First TBPA reacts with diethylene glycol to produce an acid ester. The acid ester and propylene oxide then react to give a diester. The final product, a triol having two primary and one secondary hydroxyl group, is used exclusively as a flame retardant for rigid polyurethane foam (53,54). [Pg.470]

Eyrol 51 is a water-soluble Hquid containing about 21% phosphoms. It is made by a multistep process from dimethyl methylphosphonate, phosphoms pentoxide, and ethylene oxide. The end groups are principally primary hydroxyl and the compound can thus be incorporated chemically into aminoplasts, phenoHc resins, and polyurethanes. Eyrol 51, or 58 if diluted with a small amount of isopropanol, is used along with amino resins to produce a flame-retardant resin finish on paper used for automotive air filters, or for backcoating of upholstery fabric to pass the British or California flammabiHty standards. [Pg.479]

Laboratory experiments using rodents, or the use of gas analysis, tend to be confused by the dominant variable of fuel—air ratio as well as important effects of burning configuration, heat input, equipment design, and toxicity criteria used, ie, death vs incapacitation, time to death, lethal concentration, etc (154,155). Some comparisons of polyurethane foam combustion toxicity with and without phosphoms flame retardants show no consistent positive or negative effect. Moreover, data from small-scale tests have doubtful relevance to real fine ha2ards. [Pg.481]

E. D. Weil, "Flame Retardant Chemicals for Polyurethane AppHcations," Polyurethane Technol Conf. (Preprints), Clemson Univ., Clemson, S.C., 1987. [Pg.482]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

Phosphoms compounds are effective flame retardants for oxygenated synthetic polymers such as polyurethanes and polyesters. Aryl phosphates and chloroalkyl phosphates are commonly used, although other compounds such as phosphonates are also effective. The phosphoms compounds can promote char formation, thereby inhibiting further ignition and providing an efficient thermal insulation to the underlying polymer. [Pg.373]

Flame retardants (qv) are incorporated into the formulations in amounts necessary to satisfy existing requirements. Reactive-type diols, such as A/ A/-bis(2-hydroxyethyl)aminomethylphosphonate (Fyrol 6), are preferred, but nonreactive phosphates (Fyrol CEF, Fyrol PCF) are also used. Often, the necessary results are achieved using mineral fillers, such as alumina trihydrate or melamine. Melamine melts away from the flame and forms both a nonflammable gaseous environment and a molten barrier that helps to isolate the combustible polyurethane foam from the flame. Alumina trihydrate releases water of hydration to cool the flame, forming a noncombustible inorganic protective char at the flame front. Flame-resistant upholstery fabric or liners are also used (27). [Pg.348]

Flame-Retardant Applications. The flame resistance of polyolefins, unsaturated polyester, mbber, and many other synthetic materials can be improved by the iaclusion of chloriaated paraffias. The soHd 70% chlorine product is the preferred choice ia most polymeric systems, but the Hquid grades are widely used ia mbbers, polyurethane, and textile treatments. [Pg.44]

Also of interest are salts of melamine (see Chapter 24). In the nylons these can be used with bright colours (unlike red phosphorus) and do not adversely affect electrical properties. They do, however, decompose at about 320°C. Similar materials are very important in giving flame-retardant properties to polyurethane foams. [Pg.149]

There is also growing interest in multi-phase systems in which hard phase materials are dispersed in softer polyether diols. Such hard phase materials include polyureas, rigid polyurethanes and urea melamine formaldehyde condensates. Some of these materials yield high-resilience foams with load deflection characteristics claimed to be more satisfactory for cushioning as well as in some cases improving heat resistance and flame retardancy. [Pg.808]

Ironically, the reactor was used to produce Antiblaze 19, a flame retardant used in textiles and polyurethane foam. Antiblaze 19 is a cyclic phosphorate ester produced from a mixture of trimethyl phosphite, dimethyl methylphosphonate (DMMP), and trimethyl phosphate (TMOP). The final product is not considered flammable, but trimethyl phosphite is moisture sensitive and flammable, with a flash point of about 27 C. [Pg.259]

Paints are complex formulations of polymeric binders with additives including anti-corrosion pigments, colors, plasticizers, ultraviolet absorbers, flame-retardant chemicals, etc. Almost all binders are organic materials such as resins based on epoxy, polyurethanes, alkyds, esters, chlorinated rubber and acrylics. The common inorganic binder is the silicate used in inorganic zinc silicate primer for steel. Specific formulations are available for application to aluminum and for galvanized steel substrates. [Pg.908]

C.F. Cullis, Combustion of Flexible Polyurethane Foams. Mechanism and Evaluation of Flame Retardance , Combust Flame 24 (2), 217-30 (1975) CA 83, 82287 (1975)... [Pg.830]

A good example of the many successftil DfE Partnerships is the Furniture Flame Retard-ancy Partnerhip. Pentabromodiphenylether (PentaBDE) was the primary flame retardant used in low density, flexible polyurethane furniture foam. Due to concerns over its use and the fact that the chemical was found widespread in the environment and in human tissue and breast milk, PentaBDE was voluntarily phased out of production by US manufacturers in January 2004. The industry needed alternatives in order to meet furniture flame retardancy requirements, but did not have the human and environmental health and safety information needed in order to compare the alternatives. DfE worked with the furniture manufacturers, foam manufacturers, and flame-retardant chemical suppliers along with governmental and environmental groups to evaluate possible alternatives. [Pg.285]

Eastern Research Group and Syracuse Research Corporation (2005) Furniture Flame Retardancy Partnership Environmental Profiles of Chemical Flame-Retardant Additives for Low-Density Polyurethane Foam. United States Environmental Protection Agency, EPA 742-R-05-002A. [Pg.319]

Flame retardants in polyurethane foams were determined by SFE-SFC [117]. Off-line SFE-SFC-FID was used for the analysis of additives in polyurethanes [52], and on-line SFE-SFC for extraction of additives from isocyanate formulations [107]. [Pg.443]

In order to validate sliding spark spectrometry results, plastic material was collected and the element concentration was determined via AAS after digestion. The samples were used as calibration standards. Additional standards were obtained by manufacturing known amounts of additives in the polymer matrix. Calibrations were made for Cd, Cr, Pb, Zn, Sb, Si and Ti in chlorine-free polymers Al, Ba, Ca, Cd, Pb, Sn, Ti, Zn in PVC chlorine (as PVC) and bromine in polyurethane (PUR). A calibration curve for Br as a flame retardant in PUR is shown in Figure 8.5. [Pg.617]

Flame retardants currently in use which operate by inhibiting vapor phase flame chemistry may be far from optimum. Those flame retardant systems which evolve hydrogen chloride, and perhaps even those which evolve hydrogen bromide, may be acting by little more than a physical effect (1). Some of our own work on tris(dichloroisopropyl) phosphate in polyurethane foams also suggests a physical mode of action (2). [Pg.97]

Commercially available flame retardants include chlorine- and bromine-containing compounds, phosphate esters, and chloroalkyl phosphates. Recent entry into the market place is a blend of an aromatic bromine compound and a phosphate ester (DE-60F Special) for use in flexible polyurethane foam (8). This paper describes the use of a brominated aromatic phosphate ester, where the bromine and phosphorus are in the same molecule, in high temperature thermoplastic applications. [Pg.255]

It is nearly 20 years ago that the unacceptable fire behaviour of "modern" upholstered furniture became highlighted in the UK by Fire Brigade reports of domestic fires. This poor performance was blamed on the use of flexible polyurethane (PU) foam upholstery and demands were made to ban PU foam or at least to insist on the use of flame retarded PU foam. [Pg.498]

The next major improvement was the development of combustion modified PU foam. The original CMHR polyurethane foam was developed in the USA (26) and contained hydrated alumina and halogenated flame retardants but was made in a single operation. It was used in institutions, public buildings, hotels etc. but its high density and less than optimum physical properties... [Pg.503]

The 1988 Consumer Safety Regulations depart from the principle of testing composites because they essentially test individual materials in a standard manner although the composite BS 5852 test is used. Thus flame retarded fabrics and interliners are tested with a specified standard PU foam and polyurethane foams and other fillings are tested with a specified flame retarded polyester fabric. It is understood that this... [Pg.506]

These criteria were developed by the UK PU foam industry and were intended to differentiate the melamine or exfoliated graphite containing combustion modified PU foams from the standard, high resilience and flame retarded (chloro and bromo phosphate) containing PU foams (Table IV). This distinction was required because large scale burning tests of real arm chairs and furnished rooms had demonstrated the superiority of the combustion modified polyurethane foams. [Pg.511]

Used industrially as a chemical intermediate in the manufacture of pesticides and phos-phosilicate glass. Used as a gasoline additive, catalyst, and as a fireproofing agent in the production of textiles and flame-retardant polymers for polyurethane foams. [Pg.59]

Reactive fibers, 9 486-489 Reactive flame retardants, 11 474-479 brominated, ll 475-477t Reactive gases, 13 456 Reactive groups, types of, 9 178 Reactive hot melt butyl sealants, 22 44 Reactive hot melt polyurethanes, 22 37-38 Reactive hot melt silicones, 22 35 Reactive ion-beam etching (RIBE), 22 184 Reactive ion etching (RIE), 20 278 22 183 of lotus effect surfaces, 22 120 Reactive lead alloys, 14 779 Reactive liquid metal infiltration process, 16 168... [Pg.789]


See other pages where Polyurethanes flame retardants is mentioned: [Pg.476]    [Pg.476]    [Pg.478]    [Pg.167]    [Pg.421]    [Pg.329]    [Pg.527]    [Pg.148]    [Pg.148]    [Pg.798]    [Pg.343]    [Pg.124]    [Pg.554]    [Pg.565]    [Pg.40]    [Pg.65]    [Pg.452]    [Pg.569]    [Pg.304]    [Pg.503]    [Pg.591]   
See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.213 , Pg.214 ]




SEARCH



Flame retardancy polyurethane foam flammability

© 2024 chempedia.info