Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The nature of heterogeneity

Although solid-phase synthesis revolutionized synthetic organic chemistry and triggered the development of combinatorial chemistry, it still exhibits several shortcomings originating from the nature of heterogeneous conditions, such as lower reaction rates and difficulties in reaction monitoring. [Pg.115]

The first step of surveying was represented by studying the nature of heterogeneous deactivation of singlet oxygen on a surface of oxidized and partially reduced zinc oxide [102] with the aid of semiconductor sensors. At room temperature and the pressure of O2 10 Torr, the value of y for de-exciting 02( A ) in ZnO is equal or approximately... [Pg.311]

Another powerful tool for examining this issue is the use of time-resolved fluorescence spectra, especially when combined with the technique of Time-Resolved Area Normalized Emission Spectra (TRANES) developed by Periasamy and coworkers [78-80]. In this method, separate decay curves are collected over a wide range of emission wavelengths and reconstructed into time-resolved spectra, which are then normalized to constant area. In this model-free approach, it is possible to deduce the nature of heterogeneity of the fluorescent species from the... [Pg.323]

One of the cornerstones of combinatorial synthesis has been the development of solid-phase organic synthesis (SPOS) based on the original Merrifield method for peptide preparation [19]. Because transformations on insoluble polymer supports should enable chemical reactions to be driven to completion and enable simple product purification by filtration, combinatorial chemistry has been primarily performed by SPOS [19-23], Nonetheless, solid-phase synthesis has several shortcomings, because of the nature of heterogeneous reaction conditions. Nonlinear kinetic behavior, slow reaction, solvation problems, and degradation of the polymer support, because of the long reactions, are some of the problems typically experienced in SPOS. It is, therefore, not surprising that the first applications of microwave-assisted solid-phase synthesis were reported as early 1992 [24],... [Pg.407]

In an oversimplification, we can identify the following two ways in which the nature of heterogeneous catalytic reactions may differ from homogeneous catalytic reactions with mononuclear catalysts. [Pg.232]

Boreskov, G.K., Development of ideas on the nature of heterogeneous catalysis. Kinet Ratal, 18, 1111-1121, 1977 (in Russian). [Pg.186]

We used the concept of sound velocity dispersion for explanation of the shift of pulse energy spectrum maximum, transmitted through the medium, and correlation of the shift value with function of medium heterogeneity. This approach gives the possibility of mathematical simulation of the influence of both medium parameters and ultrasonic field parameters on the nature of acoustic waves propagation in a given medium. [Pg.734]

All gases below their critical temperature tend to adsorb as a result of general van der Waals interactions with the solid surface. In this case of physical adsorption, as it is called, interest centers on the size and nature of adsorbent-adsorbate interactions and on those between adsorbate molecules. There is concern about the degree of heterogeneity of the surface and with the extent to which adsorbed molecules possess translational and internal degrees of freedom. [Pg.571]

Brunauer (see Refs. 136-138) defended these defects as deliberate approximations needed to obtain a practical two-constant equation. The assumption of a constant heat of adsorption in the first layer represents a balance between the effects of surface heterogeneity and of lateral interaction, and the assumption of a constant instead of a decreasing heat of adsorption for the succeeding layers balances the overestimate of the entropy of adsorption. These comments do help to explain why the model works as well as it does. However, since these approximations are inherent in the treatment, one can see why the BET model does not lend itself readily to any detailed insight into the real physical nature of multilayers. In summary, the BET equation will undoubtedly maintain its usefulness in surface area determinations, and it does provide some physical information about the nature of the adsorbed film, but only at the level of approximation inherent in the model. Mainly, the c value provides an estimate of the first layer heat of adsorption, averaged over the region of fit. [Pg.653]

It would be difficult to over-estimate the extent to which the BET method has contributed to the development of those branches of physical chemistry such as heterogeneous catalysis, adsorption or particle size estimation, which involve finely divided or porous solids in all of these fields the BET surface area is a household phrase. But it is perhaps the very breadth of its scope which has led to a somewhat uncritical application of the method as a kind of infallible yardstick, and to a lack of appreciation of the nature of its basic assumptions or of the circumstances under which it may, or may not, be expected to yield a reliable result. This is particularly true of those solids which contain very fine pores and give rise to Langmuir-type isotherms, for the BET procedure may then give quite erroneous values for the surface area. If the pores are rather larger—tens to hundreds of Angstroms in width—the pore size distribution may be calculated from the adsorption isotherm of a vapour with the aid of the Kelvin equation, and within recent years a number of detailed procedures for carrying out the calculation have been put forward but all too often the limitations on the validity of the results, and the difficulty of interpretation in terms of the actual solid, tend to be insufficiently stressed or even entirely overlooked. And in the time-honoured method for the estimation of surface area from measurements of adsorption from solution, the complications introduced by... [Pg.292]

Sonochemistry can be roughly divided into categories based on the nature of the cavitation event homogeneous sonochemistry of hquids, heterogeneous sonochemistry of hquid—hquid or hquid—sohd systems, and sonocatalysis (which overlaps the first two) (12—15). In some cases, ultrasonic irradiation can increase reactivity by nearly a million-fold (16). Because cavitation can only occur in hquids, chemical reactions are not generaUy seen in the ultrasonic irradiation of sohds or sohd-gas systems. [Pg.255]

Surface Area. Surface area is the available area of fillers, be it on the surface or in cracks, crevices, and pores. The values obtained from different methods for measuring the surface area of a filler may vary significandy. These variations are because of the nature of the methods and in many instances yield information related to the heterogeneity of the surface. Understanding the surface area is important because many processing factors are dependent on the surface area, eg, ease of filler dispersion, rheology, and optimum filler loading. [Pg.367]

Eree-radical initiation of emulsion copolymers produces a random polymerisation in which the trans/cis ratio caimot be controlled. The nature of ESBR free-radical polymerisation results in the polymer being heterogeneous, with a broad molecular weight distribution and random copolymer composition. The microstmcture is not amenable to manipulation, although the temperature of the polymerisation affects the ratio of trans to cis somewhat. [Pg.495]

Of these, the most extensive use is to identify adsorbed molecules and molecular intermediates on metal single-crystal surfaces. On these well-defined surfaces, a wealth of information can be gained about adlayers, including the nature of the surface chemical bond, molecular structural determination and geometrical orientation, evidence for surface-site specificity, and lateral (adsorbate-adsorbate) interactions. Adsorption and reaction processes in model studies relevant to heterogeneous catalysis, materials science, electrochemistry, and microelectronics device failure and fabrication have been studied by this technique. [Pg.443]

Nevertheless, as response data have accumulated and the nature of the porous deformation problems has crystallized, it has become apparent that the study of such solids has forced overt attention to issues such as lack of thermodynamic equilibrium, heterogeneous deformation, anisotrophic deformation, and inhomogeneous composition—all processes that are present in micromechanical effects in solid density samples but are submerged due to continuum approaches to mechanical deformation models. [Pg.50]

As already remarked in the introduction, the formulation of the laws governing heterogeneous equilibria by Bakhuis Roozeboom1 was partly based on his studies on gas hydrates. Although the general laws he derived are certainly correct, and have marked an important step in the development of physical chemistry, Roozeboom and his contempories were mistaken in the nature of the phase diagram of gas hydrates gas hydrates are not stoichiometric... [Pg.34]


See other pages where The nature of heterogeneity is mentioned: [Pg.304]    [Pg.28]    [Pg.642]    [Pg.230]    [Pg.182]    [Pg.151]    [Pg.420]    [Pg.280]    [Pg.23]    [Pg.687]    [Pg.40]    [Pg.20]    [Pg.117]    [Pg.331]    [Pg.304]    [Pg.28]    [Pg.642]    [Pg.230]    [Pg.182]    [Pg.151]    [Pg.420]    [Pg.280]    [Pg.23]    [Pg.687]    [Pg.40]    [Pg.20]    [Pg.117]    [Pg.331]    [Pg.730]    [Pg.199]    [Pg.418]    [Pg.262]    [Pg.394]    [Pg.1313]    [Pg.245]    [Pg.248]    [Pg.255]    [Pg.156]    [Pg.776]    [Pg.1165]    [Pg.34]    [Pg.154]    [Pg.161]    [Pg.121]    [Pg.2]    [Pg.17]   


SEARCH



The Cycling of Iron in Natural Systems Some Aspects Based on Heterogeneous Redox Processes

© 2024 chempedia.info