Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly latex

Fig. XI-7. Volume fraction profile of 280,000-molecular-weight poly(ethylene oxide) adsorbed onto deuterated polystyrene latex at a surface density of 1.21 mg/m and suspended in D2O, from Ref. 70. Fig. XI-7. Volume fraction profile of 280,000-molecular-weight poly(ethylene oxide) adsorbed onto deuterated polystyrene latex at a surface density of 1.21 mg/m and suspended in D2O, from Ref. 70.
Anotlier model system consists of polymetliylmetliacrylate (PMMA) latex, stabilized in organic solvents by a comb polymer, consisting of a PMMA backbone witli poly-12-hydroxystearic acid (PHSA) chains attached to it [10]. The PHSA chains fonn a steric stabilization layer at tire surface (see section C2.6.4). Such particles can approach tire hard-sphere model very well [111. [Pg.2670]

Poly(vinyl acetate) is used in latex water paints because of its weathering, quick-drying, recoat-ability, and self-priming properties. It is also used in hot-melt and solution adhesives. [Pg.1025]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Poly etrafluoroethylene is manufactured and sold in three forms granular, fine powder, and aqueous dispersion each requires a different fabrication technique. Granular resins are manufactured in a wide variety of grades to obtain a different balance between powder flows and end use properties (Pig. 1). Pine powders that are made by coagulating aqueous dispersions also are available in various grades. Differences in fine powder grades correspond to their usefulness in specific appHcations and to the ease of fabrication. Aqueous dispersions are sold in latex form and are available in different grades. A variety of formulation techniques are used to tailor these dispersions for specific appHcations. [Pg.349]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

The viscosity of the latex can also be dependent on pH. In the case of some latices, lowering the pH with a weak acid such as glycine is an effective method for raising the viscosity without destabilising the system. Latices made with poly(vinyl alcohol) as the primary emulsifier can be thickened by increasing the pH with a strong alkaU. [Pg.28]

The adhesives (qv) used to form tube seams and bag bottoms include unborated dextrin, borated dextrin, casein, latex—casein, latex, poly(vinyl acetate), vinyl acetate copolymers, and hot-melt materials (10,27). Dextrin and casein adhesives are more commonly used in the production of grocery sacks vinyl acetate-type adhesives are commonly used in ah paper multiwah bags. The hot-melt adhesives are typicahy used to tack the phes of the multiwah bag together and to form the seam and bottom joints when polymer film phes or coated paper phes are used in bag constmction. [Pg.519]

The seam closure on a folding carton is typicahy made using a latex, poly(vinyl acetate), vinyl acetate copolymer, or hot-melt adhesive (27). The choice of adhesive depends on a number of factors, including the nature of any coating used on the package and the production speeds required. [Pg.519]

Thickeners. Thickeners are added to remover formulas to increase the viscosity which allows the remover to cling to vertical surfaces. Natural and synthetic polymers are used as thickeners. They are generally dispersed and then caused to swell by the addition of a protic solvent or by adjusting the pH of the remover. When the polymer swells, it causes the viscosity of the mixture to increase. Viscosity is controlled by the amount of thickener added. Common thickeners used in organic removers include hydroxypropylmethylceUulose [9004-65-3], hydroxypropylceUulose [9004-64-2], hydroxyethyl cellulose, and poly(acryHc acid) [9003-01-4]. Thickeners used in aqueous removers include acryHc polymers and latex-type polymers. Some thickeners are not stable in very acidic or very basic environments, so careful selection is important. [Pg.550]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Because the viscosity of neoprene latex at a given soHds content is less than that of natural mbber latex, thickeners are generally needed with the former. MethylceUulose and the water-soluble salts of poly(acryhc acid) are the two most commonly used thickeners. Natural and synthetic gums are also used. [Pg.256]

Heat-SensitiZingProcess. Another process used to make latex mbber articles of thicker section involves sensitizing the compound so that it coagulates when heated to a given temperature, then using heated molds to build the article to the desired thickness. Ammonia-preserved latex is used in this process, and polyether, polythioether, or poly(vinyl methyl ether) (PVME) can be used as heat-sensitizing agents. [Pg.259]

Vinylidene Chloride Copolymer Latex. Vinyhdene chloride polymers are often made in emulsion, but usuaUy are isolated, dried, and used as conventional resins. Stable latices have been prepared and can be used direcdy for coatings (171—176). The principal apphcations for these materials are as barrier coatings on paper products and, more recently, on plastic films. The heat-seal characteristics of VDC copolymer coatings are equaUy valuable in many apphcations. They are also used as binders for paints and nonwoven fabrics (177). The use of special VDC copolymer latices for barrier laminating adhesives is growing, and the use of vinyhdene chloride copolymers in flame-resistant carpet backing is weU known (178—181). VDC latices can also be used to coat poly(ethylene terephthalate) (PET) bottles to retain carbon dioxide (182). [Pg.442]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

Poly(vinyl acetate) and its copolymers with ethylene are available as spray-dried emulsion soHds with average particle sizes of 2—20 p.m the product can be reconstituted to an emulsion by addition of water or it can be added directly to formulations, eg, concrete. The powders may be used to raise soHds of a lower soHds latex. Solutions of resin in methyl and ethyl alcohol at 2—50 wt % soHds are also available. [Pg.468]

Poly(vinyl acetate) latex paints are the first choice for interior use (149). Their abihty to protect and decorate is reinforced by several advantages belonging exclusively to latex paints they do not contain solvents so that physiological harm and fire ha2ards are eliminated they are odorless they are easy to apply with spray gun, roUer-coater, or bmsh and they dry rapidly. The paint can be thinned with water, and bmshes or coaters can be cleaned with soap and tepid water. The paint is usually dry in 20 minutes to two hours, and two coats may be applied the same day. [Pg.470]

In contrast to other polymers the resistance to water permeation is low due to the hydrolysis of the poly(vinyl acetate) (163,164). Ethylene copolymers have been developed which have improved water resistance and waterproofness. The polymer can be used in the latex form or in a spray-dried form which can be preblended in with the cement (qv) in the proper proportion. The compressive and tensile strength of concrete is improved by addition of PVAc emulsions to the water before mixing. A polymer-soHds-to-total-soHds ratio of ca 10 90 is best. The emulsions also aid adhesion between new and old concrete when patching or resurfacing. [Pg.471]

Emulsion Polymerization. Poly(vinyl acetate) and poly(vinyl acetate) copolymer latexes prepared in the presence of PVA find wide appHcations in adhesives, paints, textile finishes, and coatings. The emulsions show exceUent stabiHty to mechanical shear as weU as to the addition of electrolytes, and possess exceUent machining characteristics. [Pg.488]

Partially hydrolyzed poly(vinyl alcohol) grades are preferred because they have a hydrophobic /hydrophilic balance that make them uniquely suited for emulsion polymerization. The compatibUity of the residual acetate units with the poly(vinyl acetate) latex particles partly explains the observed stabilization effect. The amount of PVA employed is normally 4—10% on the weight of vinyl acetate monomer. The viscosity of the resulting latex increases with increasing molecular weight and decreasing hydrolysis of the PVA (318). [Pg.488]

The largest volume commercial derivatives of 1-butanol are -butyl acrylate [141-32-2] and methacrylate [97-88-1] (10). These are used principally ia emulsion polymers for latex paints, ia textile appHcations and ia impact modifiers for rigid poly(vinyl chloride). The consumption of / -butanol ia the United States for acrylate and methacrylate esters is expected to rise to 182,000—186,000 t by 1993 (10). [Pg.358]

Many similar hydrocarbon duids such as kerosene and other paraffinic and naphthenic mineral oils and vegetable oils such as linseed oil [8001-26-17, com oil, soybean oil [8001-22-7] peanut oil, tall oil [8000-26-4] and castor oil are used as defoamers. Liquid fatty alcohols, acids and esters from other sources and poly(alkylene oxide) derivatives of oils such as ethoxylated rosin oil [68140-17-0] are also used. Organic phosphates (6), such as tributyl phosphate, are valuable defoamers and have particular utiHty in latex paint appHcations. Another important class of hydrocarbon-based defoamer is the acetylenic glycols (7), such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol which are widely used in water-based coatings, agricultural chemicals, and other areas where excellent wetting is needed. [Pg.463]

A variety of waxy hydrophobic hydrocarbon-based soHd phases are used including fatty acid amides and sulfonamides, hydrocarbon waxes such as montan wax [8002-53-7], and soHd fatty acids and esters. The amides are particularly important commercially. One example is the use of ethylenediamine distearamide [110-30-5] as a component of latex paint and paper pulp blackHquor defoamer (11). Hydrocarbon-based polymers are also used as the soHd components of antifoaming compositions (5) examples include polyethylene [9002-88-4], poly(vinyl chloride) [9002-86-2], and polymeric ion-exchange resins. [Pg.463]

Polyglycol Dow Chemical Co. poly(propylene oxide) used in latex and emulsion paints... [Pg.464]

Blends with PVC. Nitrile mbber may be blended with poly(vinyl chloride) (PVC) by the polymer producer by two different techniques (1) blending of NBR latex with PVC latex followed by co-coagulation and drying, or (2) physically mixing the soHd NBR and PVC powder in mixing equipment such as an internal mixer. NBR—PVC polymer blends are well known for the good ozone resistance that is imparted by the PVC. [Pg.522]

Latex Types. Latexes are differentiated both by the nature of the coUoidal system and by the type of polymer present. Nearly aU of the coUoidal systems are similar to those used in the manufacture of dry types. That is, they are anionic and contain either a sodium or potassium salt of a rosin acid or derivative. In addition, they may also contain a strong acid soap to provide additional stabUity. Those having polymer soUds around 60% contain a very finely tuned soap system to avoid excessive emulsion viscosity during polymeri2ation (162—164). Du Pont also offers a carboxylated nonionic latex stabili2ed with poly(vinyl alcohol). This latex type is especiaUy resistant to flocculation by electrolytes, heat, and mechanical shear, surviving conditions which would easUy flocculate ionic latexes. The differences between anionic and nonionic latexes are outlined in Table 11. [Pg.547]


See other pages where Poly latex is mentioned: [Pg.115]    [Pg.487]    [Pg.421]    [Pg.28]    [Pg.270]    [Pg.10]    [Pg.535]    [Pg.260]    [Pg.270]    [Pg.230]    [Pg.442]    [Pg.464]    [Pg.466]    [Pg.466]    [Pg.468]    [Pg.470]    [Pg.502]    [Pg.296]    [Pg.138]    [Pg.490]    [Pg.152]    [Pg.371]    [Pg.395]    [Pg.396]   
See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.350 , Pg.351 , Pg.360 ]

See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Poly , latex film

Poly latex particles

Poly latex particles, swelling

© 2024 chempedia.info