Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Average Particle Sizes

By carefully controlling the precipitation reaction we can significantly increase a precipitate s average particle size. Precipitation consists of two distinct events nu-cleation, or the initial formation of smaller stable particles of precipitate, and the subsequent growth of these particles. Larger particles form when the rate of particle growth exceeds the rate of nucleation. [Pg.240]

Three polystyrene samples of narrow molecular weight distribution were investigatedf for their retention in GPC columns in which the average particle size of the packing was varied. In all instances the peaks were well resolved. The following results were obtained ... [Pg.658]

Sodium carbonate monohydrate crystals from the crystallizers are concentrated in hydroclones and dewatered on centrifuges to between 2 and 6% free moisture. This centrifuge cake is sent to dryers where the product is calcined 150°C to anhydrous soda ash, screened, and readied for shipment. Soda ash from this process typically has a bulk density between 0.99—1.04 g/mL with an average particle size of about 250 p.m. [Pg.525]

Ma.nufa.cture. Nitroguanidine may be made by several methods. In all the processes guanidine nitrate is the iatermediate which is then dehydrated with sulfuric acid. When used ia propellants, the average particle size of nitroguanidine has to be carefully controlled. [Pg.16]

Magnesium hydroxide is white, has an average particle size of 1—10 p.m, density of 2.36 g/mL, refractive index of 1.58, and Mohs hardness of 2.00. Water loss on ignition is 31.8 wt %. Magnesium hydroxide contains 1.0 wt % Ca(OH)2 and is made by Solem Industries and Morton Thiokol (25). [Pg.458]

Particle Size. The soHds in a fluidized bed are never identical in size and foUow a particle size distribution. An average particle diameter, is generally used for design. It is necessary to give relatively more emphasis to the low end of the particle size distribution (fines), which is done by using the surface mean diameter, to calculate an average particle size ... [Pg.70]

Geldart a group Powder Average particle size, (, )J.m Particle density, p, kg/m Angles Internal friction, deg of Repose, deg Sphericity, f... [Pg.71]

Group D particles are large, on the order of 1 or more millimeters (1000 fim) in average particle size. In a fluidized bed, they behave similarly to Group B particles. Because of the high gas velocities required to fluidize Group D particles, it is often more economical to process these particles in spouted or in moving beds, where lower gas rates suffice. [Pg.73]

Whereas Geldart s classification relates fluidized-bed behavior to the average particle size in a bed, particle feed sizes maybe quite different. For example, in fluidized-bed coal (qv) combustion, large coal particles are fed to a bed made up mostly of smaller limestone particles (see Coal conversion processes). [Pg.73]

Flue particles ia a fluidized bed are analogous to volatile molecules ia a Foiling solution. Therefore, the concentration of particles ia the gas above a fluidized bed is a function of the saturation capacity of the gas. To calculate the entrainment rate, it is first necessary to determine what particle sizes ia the bed can be entrained. These particles are the ones which have a terminal velocity less than the superficial gas velocity, assuming that iaterparticle forces ia a dilute zone of the freeboard are negligible. An average particle size of the entrainable particles is then calculated. If all particles ia the bed are entrainable, the entrained material has the same size distribution as the bed material. [Pg.80]

Aqueous Dispersions. The dispersion is made by the polymerization process used to produce fine powders of different average particle sizes (58). The most common dispersion has an average particle size of about 0.2 p.m, probably the optimum particle size for most appHcations. The raw dispersion is stabilized with a nonionic or anionic surfactant and concentrated to 60—65 wt % soHds by electrodecantation, evaporation, or thermal concentration (59). The concentrated dispersion can be modified further with chemical additives. The fabrication characteristics of these dispersions depend on polymerization conditions and additives. [Pg.350]

An FEP copolymer dispersion is available as a 55-wt % aqueous dispersion containing 6% nonionic surfactant (on a soflds basis) and a small amount of anionic dispersiag agent. Its average particle size is ca 0.2 p.m. [Pg.359]

The precursor glass powders may be produced by various methods, the simplest being the milling of quenched glass to an average particle size of 3—15 p.m. Sol gel processes, in which highly uniform, ultrafine amorphous particles are grown in a chemical solution, may be preferable for certain apphcations. [Pg.320]

Avera.ge Particle Size. Average particle size refers to a statistical diameter, the value of which depends to a certain extent on the method of deterniiaation. The average particle size can be calculated from the particle-size distribution (see Size measurement of particles). [Pg.181]

Particle Size Distribution. For many P/M processes, the average particle size is not necessarily a decisive factor, whereas the distribution of the particles of various sizes ia the powder mass is. The distribution curve can be irregular, show a rather regular distribution with one maximum, have more than one maximum, or be perfecdy uniform. [Pg.181]

Specific Surface. The total surface area of 1 g of powder measured ia cm /g is called its specific surface. The specific surface area is an excellent iadicator for the conditions under which a reaction is initiated and also for the rate of the reaction. It correlates in general with the average particle size. The great difference in surface area between 6-p.m reduced iron powder and 7-p.m carbonyl iron powder (Table 3) cannot be explained in terms of particle size, but mainly by the difference between the very inregular-shaped reduced and the spherical carbonyl iron powders. [Pg.181]

Deterrnination of the specific surface area can be made by a variety of adsorption measurements or by air-permeability deterrninations. It is customary to calculate average particle size from the values of specific surface by making assumptions regarding particle size distribution and particle shape, ie, assume it is spherical. [Pg.181]

Atomization of one liter of condensed product to an average particle size of 50 )J.m dia equals 341,000 cm surface. [Pg.366]

The average particle size of coating-grade titanium dioxide is ca 0.3 p.m. Because this size is optimum for maximum hiding power and because of its... [Pg.9]

For some apphcations, eg, foam mbber, high soHds (>60%) latices are requited. In the direct process, the polymerization conditions are adjusted to favor the production of relatively large average particle-size latices by lowering the initial emulsifier and electrolyte concentration and the water level ia the recipe, and by controlling the initiation step to produce fewer particles. Emulsifier and electrolyte are added ia increments as the polymerization progresses to control latex stabiUty. A latex of wt% soHds is obtained and concentrated by evaporation to 60—65 wt % soHds. [Pg.254]

Poly(vinyl acetate) and its copolymers with ethylene are available as spray-dried emulsion soHds with average particle sizes of 2—20 p.m the product can be reconstituted to an emulsion by addition of water or it can be added directly to formulations, eg, concrete. The powders may be used to raise soHds of a lower soHds latex. Solutions of resin in methyl and ethyl alcohol at 2—50 wt % soHds are also available. [Pg.468]

Boron has been studied as a possible fuel for soHd fuel ramjets (10,11). Fine particle sized boron, where the average particle size is 0.3 )J.m, has been studied for use as a gas-generating agent for soHd fuel ram rockets (12). [Pg.184]


See other pages where Average Particle Sizes is mentioned: [Pg.198]    [Pg.39]    [Pg.371]    [Pg.458]    [Pg.70]    [Pg.72]    [Pg.72]    [Pg.75]    [Pg.76]    [Pg.349]    [Pg.362]    [Pg.302]    [Pg.180]    [Pg.191]    [Pg.515]    [Pg.4]    [Pg.256]    [Pg.52]    [Pg.257]    [Pg.313]    [Pg.487]    [Pg.487]    [Pg.474]    [Pg.464]    [Pg.422]    [Pg.547]    [Pg.211]    [Pg.214]    [Pg.342]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.367 ]

See also in sourсe #XX -- [ Pg.422 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.729 , Pg.732 , Pg.733 ]

See also in sourсe #XX -- [ Pg.37 , Pg.121 , Pg.122 , Pg.135 , Pg.136 , Pg.258 ]




SEARCH



Average size

Particle average

© 2024 chempedia.info