Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly cellulose acetate

PEN or PI Capacitance (RT) Poly cellulose acetate, poly cellulose acetate butyrate, poly (methylmethacrylate), or polyvinylpyrrolidone (spray or screen-printing) Humidity Oprea et al. (2008)... [Pg.231]

Cellulose-acetate-butyrate resin Poly(amide-imide)... [Pg.1010]

Currently, almost all acetic acid produced commercially comes from acetaldehyde oxidation, methanol or methyl acetate carbonylation, or light hydrocarbon Hquid-phase oxidation. Comparatively small amounts are generated by butane Hquid-phase oxidation, direct ethanol oxidation, and synthesis gas. Large amounts of acetic acid are recycled industrially in the production of cellulose acetate, poly(vinyl alcohol), and aspirin and in a broad array of other... [Pg.66]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

Cellulosics. CeUulosic adhesives are obtained by modification of cellulose [9004-34-6] (qv) which comes from cotton linters and wood pulp. Cellulose can be nitrated to provide cellulose nitrate [9004-70-0] which is soluble in organic solvents. When cellulose nitrate is dissolved in amyl acetate [628-63-7] for example, a general purpose solvent-based adhesive which is both waterproof and flexible is formed. Cellulose esterification leads to materials such as cellulose acetate [9004-35-7], which has been used as a pressure-sensitive adhesive tape backing. Cellulose can also be ethoxylated, providing hydroxyethylceUulose which is useful as a thickening agent for poly(vinyl acetate) emulsion adhesives. Etherification leads to materials such as methylceUulose [9004-67-5] which are soluble in water and can be modified with glyceral [56-81-5] to produce adhesives used as wallpaper paste (see Cellulose esters Cellulose ethers). [Pg.234]

The white cell adsorption filter layer is typically of a nonwoven fiber design. The biomaterials of the fiber media are surface modified to obtain an optimal avidity and selectivity for the different blood cells. Materials used include polyesters, eg, poly(ethylene terephthalate) and poly(butylene terephthalate), cellulose acetate, methacrylate, polyamides, and polyacrylonitrile. Filter materials are not cell specific and do not provide for specific filtration of lymphocytes out of the blood product rather than all leukocytes. [Pg.523]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

Membrane Sep r tion. The separation of components ofhquid milk products can be accompHshed with semipermeable membranes by either ultrafiltration (qv) or hyperfiltration, also called reverse osmosis (qv) (30). With ultrafiltration (UF) the membrane selectively prevents the passage of large molecules such as protein. In reverse osmosis (RO) different small, low molecular weight molecules are separated. Both procedures require that pressure be maintained and that the energy needed is a cost item. The materials from which the membranes are made are similar for both processes and include cellulose acetate, poly(vinyl chloride), poly(vinyHdene diduoride), nylon, and polyamide (see AFembrane technology). Membranes are commonly used for the concentration of whey and milk for cheesemaking (31). For example, membranes with 100 and 200 p.m are used to obtain a 4 1 reduction of skimmed milk. [Pg.368]

Polymer Blends. The miscibility of poly(ethylene oxide) with a number of other polymers has been studied, eg, with poly (methyl methacrylate) (18—23), poly(vinyl acetate) (24—27), polyvinylpyrroHdinone (28), nylon (29), poly(vinyl alcohol) (30), phenoxy resins (31), cellulose (32), cellulose ethers (33), poly(vinyl chloride) (34), poly(lactic acid) (35), poly(hydroxybutyrate) (36), poly(acryhc acid) (37), polypropylene (38), and polyethylene (39). [Pg.342]

Other blends such as polyhydroxyalkanoates (PHA) with cellulose acetate (208), PHA with polycaprolactone (209), poly(lactic acid) with poly(ethylene glycol) (210), chitosan and cellulose (211), poly(lactic acid) with inorganic fillers (212), and PHA and aUphatic polyesters with inorganics (213) are receiving attention. The different blending compositions seem to be limited only by the number of polymers available and the compatibiUty of the components. The latter blends, with all natural or biodegradable components, appear to afford the best approach for future research as property balance and biodegradabihty is attempted. Starch and additives have been evaluated ia detail from the perspective of stmcture and compatibiUty with starch (214). [Pg.482]

Membrane stmcture is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc). Commonly used polymers include cellulose acetates, polyamides, polysulfones, dynels (vinyl chloride-acrylonitrile copolymers) and poly(vinyhdene fluoride). [Pg.294]

PVF resins are generally compatible with phthalate, phosphate, adipate, and diben2oate plastici2ers, and with phenoHc, melamine—formaldehyde, urea—formaldehyde, unsaturated polyester, epoxy, polyurethane, and cellulose acetate butylate resins. They are incompatible with polyamide, ethyl cellulose, and poly(vinyl chloride) resins (141). [Pg.455]

Poly(vinyl acetate) emulsions can be made with a surfactant alone or with a protective coUoid alone, but the usual practice is to use a combination of the two. Normally, up to 3 wt % stabilizers may be included in the recipe, but when water sensitivity or tack of the wet film is desired, as in some adhesives, more may be included. The most commonly used surfactants are the anionic sulfates and sulfonates, but cationic emulsifiers and nonionics are also suitable. Indeed, some emulsion compounding formulas require the use of cationic or nonionic surfactants for stable formulations. The most commonly used protective coUoids are poly(vinyl alcohol) and hydroxyethyl cellulose, but there are many others, natural and synthetic, which are usable if not preferable for a given appHcation. [Pg.464]

Citric acid esters are used as plasticizers ia plastics such as poly(viayl chloride), poly(vinhdene chloride), poly(viQyl acetate), poly(viQyl butyral), polypropylene, chlorinated rubber, ethylceUulose, and cellulose nitrate. Most citrate esters are nontoxic and are acceptable by the FDA for use in food-contact packaging and for flavor in certain foods. As a plasticizer, citrate esters provide good heat and light stabiUty and excellent flexibiUty at low temperatures. Triethyl citrate, tri- -butyl citrate, isopropyl citrate, and stearyl citrate are considered GRAS for use as food ingredients (224—228). [Pg.187]

The most commonly used polymers are cellulose acetate phthalate [9004-38-0] (CAP), poly(vinyl acetate phthalate) [34481-48-6] (PVAP), hydroxypropylmethyl-ceUulosephthalate [71138-97-1] (HPMCP), and polymethacrylates (111) (see Cellulose esters). Acrylate copolymers are also available (112). Eigure 11 shows the dissolution behavior of some commercially available enteric materials. Some manufacturers supply grades designed to dissolve at specific pH values with increments as small as 0.5 pH unit (113). [Pg.148]

It may also be mentioned that a number of commercial polymers are produced by chemical modification of other polymers, either natural or synthetic. Examples are cellulose acetate from the naturally occurring polymer cellulose, poly(vinyl alcohol) from polyfvinyl acetate) and chlorosulphonated polyethylene (Hypalon) from polyethylene. [Pg.23]

Today plasticisers are used in a variety of polymers such as polyvinyl acetate, acrylic polymers, cellulose acetate and, most important of all, poly(vinyl chloride). [Pg.131]

The important features of rigidity and transparency make the material competitive with polystyrene, cellulose acetate and poly(methyl methacrylate) for a number of applications. In general the copolymer is cheaper than poly(methyl methacrylate) and cellulose acetate, tougher than poly(methyl methacrylate) and polystyrene and superior in chemical and most physical properties to polystyrene and cellulose acetate. It does not have such a high transparency or such food weathering properties as poly(methyl methacrylate). As a result of these considerations the styrene-acrylonitrile copolymers have found applications for dials, knobs and covers for domestic appliances, electrical equipment and car equipment, for picnic ware and housewares, and a number of other industrial and domestic applications with requirements somewhat more stringent than can be met by polystyrene. [Pg.441]

A wide range of polymer networks are constructed in this manner. Poly(vinyltrichloacetate) was used as the coinitiator with styrene, MMA and chloroprene as cross-linking units. Polycarbonates, polystyrene, N-haloge-nated polyamide, polypeptides, and cellulose acetate, suitably functionalized, have been used as a coinitiator... [Pg.254]

Hydroxy-containing polymers such as poly(methyl-methacrylate-co-hydroxyethyl methacrylate) [65,66] or secondary cellulose acetate [67,68] were used for this purpose. Vanadium (V) 8-hydroxy quinoline-hydroxy-ethyl methacrylate adduct, prepared by condensation of the latter with a VOQ2OH complex, is polymerized to... [Pg.256]

Reactions of this type are quite popular and widely used to introduce hydrophilic and ionogenic groups into linear polymers as well as directly into polymer networks. These reactions include hydrolysis (PAAm, PAAc and their analogs from PAN, PVA from poly (vinyl acetate), oxyethylation and oxymethylation of starch and cellulose, sulfurization, and other reactions. These processes are of industrial importance, well studied and widely reviewed. [Pg.110]

Packaging materials which have a smooth, impervious surface, free fi cm crevices or interstices, such as cellulose acetate, polyethylene, polypropylene, poly vinylchloride, and metal foils and laminates, all have a low surface microbial count. Cardboard and paperboard, unless treated, carry mould spores of Cladosporium spp., Aspergillus spp. md Penicillium spp. and bacteria such 2 Bacillus spp. sn.dMicrococcus spp. [Pg.348]

Polyisobutylene Cellulose acetate Poly(ethyl methacrylate) Poly(butyl methacrylate)... [Pg.27]

In the past, the initial layers of coating (the sealing coat) were achieved by applying one or two coats of shellac. However, due to the variability between batches of this material, PVP-stabilized types of shellac or other polymeric materials, such as cellulose acetate phthalate (CAP) and poly(vinyl acetate phthalate) (PVAP), are now more popular. It should be appreciated that a fine balance must exist between minimizing the thickness of the sealing coat and providing an adequate moisture barrier. [Pg.324]

More than 90% of all plasticisers are used with PVC, the remainder being used with PVDC, cellulose diacetate, poly(vinyl acetate) (PVAC), nylons, urethanes and acrylates. [Pg.94]


See other pages where Poly cellulose acetate is mentioned: [Pg.373]    [Pg.523]    [Pg.37]    [Pg.292]    [Pg.184]    [Pg.363]    [Pg.450]    [Pg.102]    [Pg.151]    [Pg.395]    [Pg.441]    [Pg.449]    [Pg.834]    [Pg.561]    [Pg.108]    [Pg.211]    [Pg.558]    [Pg.430]    [Pg.457]    [Pg.131]    [Pg.63]    [Pg.512]    [Pg.106]   
See also in sourсe #XX -- [ Pg.681 , Pg.683 ]




SEARCH



Cellulose acetate

Cellulose acetate poly (PMMA

Cellulose/poly

Cellulosics cellulose acetate

Poly acetals

Poly cellulose acetate butyrate blends

© 2024 chempedia.info