Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion selective membranes

Electrochemical cell for potentiometry with an ion-selective membrane electrode. [Pg.476]

The preparation of an ion-selective electrode for salicylate is described. The electrode incorporates an ion-pair of crystal violet and salicylate in a PVC matrix as the ion-selective membrane. Its use for the determination of acetylsalicylic acid in aspirin tablets is described. A similar experiment is described by Creager, S. E. Lawrence, K. D. Tibbets, C. R. in An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory, /. Chem. Educ. 1995, 72, 274-276. [Pg.533]

Radio, N. Komijenovic, J. Potentiometric Determination of an Overall formation Gonstant Using an Ion-Selective Membrane Electrode, /. Chem. Educ. 1993, 70, 509-511. [Pg.534]

Of interest is the manner in which cavities of the appropriate size are introduced into ion-selective membranes. These membranes typically consist of highly plasticized poly(vinyl chloride) (see Membrane technology). Plasticizers (qv) are organic solvents such as phthalates, sebacates, trimelLitates, and organic phosphates of various kinds, and cavities may simply be the excluded volumes maintained by these solvent molecules themselves. More often, however, neutral carrier molecules (20) are added to the membrane. These molecules are shaped like donuts and have holes that have the same sizes as the ions of interest, eg, valinomycin [2001-95-8] C H QN O g, and nonactin [6833-84-7] have wrap around stmctures like methyl monensin... [Pg.56]

COMPUTER MODELING OF lONOPHORE-BASED ION-SELECTIVE MEMBRANES USING MULTISPECIES APPROXIMATION... [Pg.305]

Ruthenium, iridium and osmium Baths based on the complex anion (NRu2Clg(H20)2) are best for ruthenium electrodeposition. Being strongly acid, however, they attack the Ni-Fe or Co-Fe-V alloys used in reed switches. Reacting the complex with oxalic acid gives a solution from which ruthenium can be deposited at neutral pH. To maintain stability, it is necessary to operate the bath with an ion-selective membrane between the electrodes . [Pg.566]

The general theoretical treatment of ion-selective membranes assumes a homogeneous membrane phase and thermodynamic equilibrium at the phase boundaries. Obvious deviations from a Nemstian behavior are explained by an additional diffusion potential inside the membrane. However, allowing stationary state conditions in which the thermodynamic equilibrium is not established some hitherto difficult to explain facts (e.g., super-Nemstian slope, dependence of the selectivity of ion-transport upon the availability of co-ions, etc.) can be understood more easily. [Pg.219]

Ion-selective bulk membranes are the electro-active component of ion-selective electrodes. They differ from biological membranes in many aspects, the most marked being their thickness which is normally more then 105 times greater, therefore electroneutrality exists in the interior. A further difference is given by the fact that ion-selective membranes are homogeneous and symmetric with respect to their functioning. However, because of certain similarities with biomembranes (e.g., ion-selectivity order, etc.) the more easily to handle ion-selective membranes were studied extensively also by many physiologists and biochemists as model membranes. For this reason research in the field of bio-membranes, and developments in the field of ion-selective electrodes have been of mutual benefit. [Pg.220]

The so-called potentiometric selectivity coefficient K " reflects the non-ideal behavior of ion-selective membranes and determines the specificity of this electro-... [Pg.220]

The most popular theoretical description of the potentiometric behavior of ion-selective membranes makes use of the three-segmented membrane model introduced by Sollner53), Teorell 30,54), and Meyer and Sievers 31-5S). In this model the two phase boundaries and the interior of the membrane are treated separately. Here, the... [Pg.225]

Of fundamental importance in understanding the electrochemistry of ion-selective membranes and also of biomembranes is the research in the field of voltammetry at ITIES mainly pioneered by Koryta and coworkers 99 101 . Koryta also demonstrated convincingly that a treatment like corroding metal electrodes is possible 102). For the latter, the description in the form of an Evans-diagram is most appropriate Fig. 4 shows schematically some mixed potentials, which are likely to arise at cation-selective membranes if interfering ions disturb an ideal Nernstian behavior82. Here, the vertical axis describes the galvani potential differences (absolute po-... [Pg.233]

The explicit mathematical treatment for such stationary-state situations at certain ion-selective membranes was performed by Iljuschenko and Mirkin 106). As the publication is in Russian and in a not widely distributed journal, their work will be cited in the appendix. The authors obtain an equation (s. (34) on page 28) similar to the one developed by Eisenman et al. 6) for glass membranes using the three-segment potential approach. However, the mobilities used in the stationary-state treatment are those which describe the ion migration in an electric field through a diffusion layer at the phase boundary. A diffusion process through the entire membrane with constant ion mobilities does not have to be assumed. The non-Nernstian behavior of extremely thin layers (i.e., ISFET) can therefore also be described, as well as the role of an electron transfer at solid-state membranes. [Pg.236]

Otherwise it has been shown that the accumulation of electrolytes by many cells runs at the expense of cellular energy and is in no sense an equilibrium condition 113) and that the use of equilibrium thermodynamic equations (e.g., the Nemst-equation) is not allowed in systems with appreciable leaks which indicate a kinetic steady-state 114). In addition, a superposition of partial current-voltage curves was used to explain the excitability of biological membranes112 . In interdisciplinary research the adaptation of a successful theory developed in a neighboring discipline may be beneficial, thus an attempt will be made here, to use the mixed potential model for ion-selective membranes also in the context of biomembrane surfaces. [Pg.237]

Stationary state situations at ion-selective membranes after Iljuschenko and Mirkin,06)... [Pg.240]

For an interfering redox reaction at an ion-selective membrane, the overpotential t B can be easily determined experimentally. It is the potential difference between the ion-selective membrane and an inert redox electrode in the same solution containing the measured ion and an interfering redox system. [Pg.242]

If Eqs. (28) and (32) are inserted into Eq. (30) the mixed potential of the ion-selective membrane for an ion exchange process of only monovalent ions of the same sign is obtained ... [Pg.246]

A novel development of the use of ion-selective electrodes is the incorporation of a very thin ion-selective membrane (C) into a modified metal oxide semiconductor field effect transistor (A) which is encased in a non-conducting shield (B) (Fig. 15.4). When the membrane is placed in contact with a test solution containing an appropriate ion, a potential is developed, and this potential affects the current flowing through the transistor between terminals Tt and T2. [Pg.563]

The ISFET is an electrochemical sensor based on a modification of the metal oxide semiconductor field effect transistor (MOSFET). The metal gate of the MOSFET is replaced by a reference electrode and the gate insulator is exposed to the analyte solution or is coated with an ion-selective membrane as illustrated in Fig. [Pg.11]

Ion-selective membranes derive their permselective properties from either ion exchange, solubility or complexation phenomena. Current ion-selective electrodes contain membranes which consist of glass, solid or liquid phases. [Pg.58]

Information retrieval, 10 (1974) 1 Inotropic steroids, design of, 30 (1993) 135 Insulin, obesity and, 17 (1980) 105 Ion-selective membrane electrodes,... [Pg.388]


See other pages where Ion selective membranes is mentioned: [Pg.493]    [Pg.532]    [Pg.395]    [Pg.143]    [Pg.55]    [Pg.172]    [Pg.172]    [Pg.219]    [Pg.221]    [Pg.224]    [Pg.225]    [Pg.225]    [Pg.225]    [Pg.226]    [Pg.227]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.236]    [Pg.239]    [Pg.241]    [Pg.286]    [Pg.143]    [Pg.165]    [Pg.402]    [Pg.49]    [Pg.57]    [Pg.58]    [Pg.59]    [Pg.59]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.333 ]

See also in sourсe #XX -- [ Pg.279 ]

See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Gold Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity

In ion-selective membranes

Ion membranes

Ion selective electrodes liquid membrane

Ion-selective electrodes membrane components

Ion-selective electrodes with liquid membranes

Ion-selective membrane electrodes

Liquid membrane type ion-selective

Membrane selection

Membrane selectivity

Membrane types, ion-selective electrodes

Membrane-based ion-selective electrodes

Selective chemical transduction based on chemoreceptive control of membrane ion permeability

© 2024 chempedia.info