Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petroleum distillates

D 2892 Petroleum distillation method employing a 15 theoretical plate... [Pg.98]

Hydrocarbon resin is a broad term that is usually used to describe a low molecular weight thermoplastic polymer synthesized via the thermal or catalytic polymerization of coal-tar fractions, cracked petroleum distillates, terpenes, or pure olefinic monomers. These resins are used extensively as modifiers in the hot melt and pressure sensitive adhesive industries. They are also used in numerous other appHcations such as sealants, printing inks, paints, plastics, road marking, carpet backing, flooring, and oil field appHcations. They are rarely used alone. [Pg.350]

Petroleum resins are low molecular weight thermoplastic hydrocarbon resins synthesized from steam cracked petroleum distillates. These resins are differentiated from higher molecular weight polymers such as polyethylene and polypropylene, which are produced from essentially pure monomers. Petroleum resin feedstocks are composed of various reactive and nonreactive aliphatic and aromatic components. The resins are usually classified as C-5... [Pg.351]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

Aromatic. Aromatic feedstreams (C-8, C-9, C-10) derived from the steam cracking of petroleum distillates are composed of styrene, iadene, vinyltoluenes (eg, meta- and i ra-methylstyrene), and their respective alkylated analogues. A typical aromatic feedstream might contain 50% reactive olefins with the remainder being alkylated benzenes and higher aromatics. [Pg.352]

G-9 Aromatic Petroleum Resins. Feedstocks typically used for aromatic petroleum resin synthesis boil in the approximate range of 100—300°C at atmospheric pressure, with most boiling in the 130—200°C range. The C-9 designation actually includes styrene (C-8) through C-10 hydrocarbons (eg, methylindene). Many of the polymerizable monomers identified in Table 1 for coumarone—indene type cmdes from coal tar are also present in aromatic fractions from cracked petroleum distillates. Therefore, the technology developed for the polymerization of coal-tar cmdes is also appHcable to petroleum-derived aromatic feedstocks. In addition to availabiHty, aromatic petroleum resins offer several advantages over coumarone—indene resins. These include improved color and odor, as weU as uv and thermal stabiHty (46). [Pg.354]

Gyclopentadiene/Dicyclopentadiene-Based Petroleum Resins. 1,3-Cyclopentadiene (CPD) is just one of the numerous compounds produced by the steam cracking of petroleum distillates. Due to the fact that DCPD is polymerized relatively easily under thermal conditions without added catalyst, resins produced from cycloaHphatic dienes have become a significant focus of the hydrocarbon resin industry. [Pg.354]

Lead sulfide is used in photoconductive cells, infrared detectors, transistors, humidity sensors in rockets, catalysts for removing mercaptans from petroleum distillates, mirror coatings to limit reflectivity, high temperature solid-film lubricants, and in blue lead pigments (82). [Pg.69]

Naphthenic acids have been the topic of numerous studies extending over many years. Originally recovered from the petroleum distillates to minimise corrosion of refinery equipment, they have found wide use as articles of commerce in metal naphthenates and other derivatives. A comprehensive overview of the uses of naphthenic acid and its derivatives can be found in References 1 and 2. A review of the extensive research on carboxyUc acids in petroleum conducted up to 1955 is available (3), as is a more recent review of purification, identification, and uses of naphthenic acid (4). [Pg.509]

Mineral spirits, a type of petroleum distillate popular for use in solvent-based house paints, consist mainly of aUphatic hydrocarbons with a trace of aromatics. This type of solvent finds use in oil- and alkyd-based house paints because of its good solvency with typical house paint binders and its relatively slow evaporation rate which imparts good bmshabiUty, open-time, and leveling. Other properties include lower odor, relatively lower cost, as well as safety and health hazard characteristics comparable to most other organic solvents. [Pg.541]

Liquid poHshes and waxes containing 10 wt % or more petroleum distillates must be contained in childproof packaging (61). General experience indicates that natural waxes and polyethylene waxes are nontoxic (62). Although nonsolvent floor poHshes are relatively nontoxic, concern for floor waxes continues to be sHp-resistance (63,64). [Pg.211]

The equihbrium shown in equation 3 normally ties far to the left. Usually the water formed is removed by azeotropic distillation with excess alcohol or a suitable azeotroping solvent such as benzene, toluene, or various petroleum distillate fractions. The procedure used depends on the specific ester desired. Preparation of methyl borate and ethyl borate is compHcated by the formation of low boiling azeotropes (Table 1) which are the lowest boiling constituents in these systems. Consequently, the ester—alcohol azeotrope must be prepared and then separated in another step. Some of the methods that have been used to separate methyl borate from the azeotrope are extraction with sulfuric acid and distillation of the enriched phase (18), treatment with calcium chloride or lithium chloride (19,20), washing with a hydrocarbon and distillation (21), fractional distillation at 709 kPa (7 atmospheres) (22), and addition of a third component that will form a low boiling methanol azeotrope (23). [Pg.214]

Table 6 compares the total production of butylenes in the United States, Western Europe, andjapan. Included in this table are relative amounts of productions from different processes. In the United States, about 92% of the butylene production comes from refinery sources, whereas only about 45% in Western Europe andjapan are from this source. This difference arises because the latter cracks mostiy petroleum distillates in the steam crackers that produce larger amounts of butylenes than the light feedstocks cracked in the United States. [Pg.366]

Carbon Blacks. Carbon blacks are occasionally used as components in mixes to make various types of carbon products. Carbon blacks are generally prepared by deposition from the vapor phase using petroleum distillate or gaseous hydrocarbon feedstocks (see Carbon, carbon black). [Pg.498]

Mascaramatic mascaras have the largest share of the market. Emulsion mascaramatics are cream-type mascaras dispensed from containers that include a closure provided with a wand ending in a small bmsh. In solvent mascaramatics, mascara masses are pigment suspensions in thickened hydrocarbon solvents such as isoparaffins and petroleum distillates. The thickeners include waxes (microcrystalline [63231 -60-7] camauba [8015-86-9] or ouricury [68917-70-4], polymers (hydrogenated polyisobutene [61693-08-1]), and esters (propylene glycol distearate [6182-11-2] or trilaurin [538-24-9]). [Pg.304]

Ethyleneamines are used in certain petroleum refining operations as well. Eor example, an EDA solution of sodium 2-aminoethoxide is used to extract thiols from straight-mn petroleum distillates (314) a combination of substituted phenol and AEP are used as an antioxidant to control fouling during processing of a hydrocarbon (315) AEP is used to separate alkenes from thermally cracked petroleum products (316) and TEPA is used to separate carbon disulfide from a pyrolysis fraction from ethylene production (317). EDA and DETA are used in the preparation and reprocessing of certain... [Pg.48]

Photooxidafions are also iudustriaHy significant. A widely used treatment for removal of thiols from petroleum distillates is air iu the presence of sulfonated phthalocyanines (cobalt or vanadium complexes). Studies of this photoreaction (53) with the analogous ziuc phthalocyanine show a facile photooxidation of thiols, and the rate is enhanced further by cationic surfactants. For the perfume iudustry, rose oxide is produced iu low toimage quantifies by singlet oxygen oxidation of citroneUol (54). Rose bengal is the photosensitizer. [Pg.435]

The effect of utilities costs on optimum operation was noted by Kiguchi and Ridgway [Pet. Refiner,. 35(12), 179 (1956)], who indicated that in petroleum-distillation columns the optimum reflux ratio varies between 1.1 and 1.5 times the minimum reflux ratio. When refrigeration is involved, 1. IRmm < flopt < 1 is used in the condensers, 1.2Rrniii < fLpt < 1 -4Rrn... [Pg.1407]

There are many types, and only the most important can be mentioned here. [See also Hunter, in Dunstan (ed.). Science of Petroleum, vol. 3, Oxford, New York, 1938, pp. 1779-1797.] They are used fairly extensively in treating petroleum distillates, in vegetable-oil, refining, in extraction of phenol-bearing coke-oven liquors, in some met extractions, and the like. Kalichevsky and Kobe (Petroleum Refining... [Pg.1637]

There are no available data to establish whether nonconductive, low viscosity chemical products such as ethyl ether similarly display hyperbolic relaxation below about 2 pS/m, or even whether this phenomenon is a practical reality for such liquids. Should Ohmic relaxation behavior continue to much less than 0.5 pS/m the risk of static accumulation would be enhanced compared with petroleum distillates. [Pg.101]

Perchloromethyl mercaptan Perchloryl fluoride Petroleum distillates (naphtha)... [Pg.381]


See other pages where Petroleum distillates is mentioned: [Pg.85]    [Pg.114]    [Pg.187]    [Pg.414]    [Pg.94]    [Pg.80]    [Pg.130]    [Pg.554]    [Pg.510]    [Pg.14]    [Pg.202]    [Pg.376]    [Pg.359]    [Pg.366]    [Pg.238]    [Pg.365]    [Pg.497]    [Pg.224]    [Pg.1323]    [Pg.1327]    [Pg.100]    [Pg.130]    [Pg.871]    [Pg.75]    [Pg.93]    [Pg.168]    [Pg.327]    [Pg.339]    [Pg.369]    [Pg.369]   
See also in sourсe #XX -- [ Pg.148 ]

See also in sourсe #XX -- [ Pg.335 , Pg.336 ]

See also in sourсe #XX -- [ Pg.334 ]

See also in sourсe #XX -- [ Pg.148 ]

See also in sourсe #XX -- [ Pg.607 ]




SEARCH



Applications of Petroleum Distillation

Catalytic cracking of petroleum distillates

Diesel fuel from distilled petroleum

Distillation of petroleum

Distillation, of crude petroleum

Distillation, petroleum

Fractional distillation of petroleum

Hydrocarbons petroleum refinery distillation

Hydroprocess product distillation, petroleum

Multicomponent distillation petroleum

Petroleum Distillation Residue

Petroleum Distillation products

Petroleum Refining Distillation

Petroleum crude and distillate

Petroleum distillate color change

Petroleum distillate ingestion

Petroleum distillates, catalytic cracking

Petroleum distillation TBP curve

Petroleum distillation design data

Petroleum distillation fractions

Petroleum distillation linear velocities

Petroleum distillation pressure drop

Petroleum distillation products, major

Petroleum distillation pseudocomponent mixtures

Petroleum distillation refinery block diagram

Petroleum distillation stripping steam usage

Petroleum distillation tray requirements

Petroleum fractional distillation

Petroleum products distillates

Petroleum products distillation ranges

Petroleum refinery distillation

Petroleum, major fractions obtained from distillation

Petroleum/fossil fuel distillation

Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column)

The Best Distillation Complex for Petroleum Refining

Vacuum distillation, petroleum industry

© 2024 chempedia.info