Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerizations catalytic

Poly(methylpentene) is obtained by a Ziegler-type catalytic polymerization of 4-methyl-1-pentene. [Pg.1020]

Hydrocarbon resin is a broad term that is usually used to describe a low molecular weight thermoplastic polymer synthesized via the thermal or catalytic polymerization of coal-tar fractions, cracked petroleum distillates, terpenes, or pure olefinic monomers. These resins are used extensively as modifiers in the hot melt and pressure sensitive adhesive industries. They are also used in numerous other appHcations such as sealants, printing inks, paints, plastics, road marking, carpet backing, flooring, and oil field appHcations. They are rarely used alone. [Pg.350]

Cycloaliphatic Diene CPD—DCPD. Cycloatiphatic diene-based hydrocarbon resias are typically produced from the thermal or catalytic polymerization of cyclopeatadieae (CPD) and dicyclopentadiene (DCPD). Upon controlled heating, CPD may be dimerized to DCPD or cracked back to the monomer. The heat of cracking for DCPD is 24.6 kJ / mol (5.88 kcal/mol). In steam cracking processes, CPD is removed from C-5 and... [Pg.352]

Polyethylene (PE) is a genetic name for a large family of semicrystalline polymers used mostiy as commodity plastics. PE resins are linear polymers with ethylene molecules as the main building block they are produced either in radical polymerization reactions at high pressures or in catalytic polymerization reactions. Most PE molecules contain branches in thek chains. In very general terms, PE stmcture can be represented by the following formula ... [Pg.367]

AH technologies employed for catalytic polymerization processes in general are widely used for the manufacture of HDPE. The two most often used technologies are slurry polymerization and gas-phase polymerization. Catalysts are usuaHy fine-tuned for a particular process. [Pg.383]

An independent development of a high pressure polymerization technology has led to the use of molten polymer as a medium for catalytic ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization at a high pressure (see Olefin polymers, low density polyethylene) have been converted to accommodate catalytic polymerization, both stirred-tank and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C (57,83,84). CdF Chimie uses a three-zone high pressure autoclave at zone temperatures of 215, 250, and 260°C (85). Residence times in all these reactors are short, typically less than one minute. [Pg.387]

Thermal polymerization is not as effective as catalytic polymerization but has the advantage that it can be used to polymerize saturated materials that caimot be induced to react by catalysts. The process consists of the vapor-phase cracking of, for example, propane and butane, followed by prolonged periods at high temperature (510—595°C) for the reactions to proceed to near completion. Olefins can also be conveniendy polymerized by means of an acid catalyst. Thus, the treated olefin-rich feed stream is contacted with a catalyst, such as sulfuric acid, copper pyrophosphate, or phosphoric acid, at 150—220°C and 1035—8275 kPa (150—1200 psi), depending on feedstock and product requirement. [Pg.208]

Heterogeneous Catalytic Polymerization. The preparation of polymers of ethylene oxide with molecular weights greater than 100,000 was first reported in 1933. The polymer was produced by placing ethylene oxide in contact with an alkaline-earth oxide for extended periods (61). In the 1950s, the low yield and low polymerization rates of the eady work were improved upon by the use of alkaline-earth carbonates as the catalysts (62). [Pg.342]

Polypropylene. There is an added dimension to the catalytic polymerization of propylene, since in addition to the requirement that the catalyst be sufficiently active to allow minute amounts of catalyst to yield large quantities of polymer, it must also give predominantly polypropylene with high tacticity that is, a highly ordered molecular stmcture with high crystallinity. The three stmctures for polypropylene are the isotactic, syndiotactic, and atactic forms (90) (see Olefin polya rs, polypropylene). [Pg.203]

Volume 25 Catalytic Polymerization of Olefins. Proceedingsofthe International Symposium... [Pg.262]

Washing light hydrocarbons with water is a common refinery practice. It finds application on the feed to catalytic polymerization plants. It is used to remove any entrained caustic from the mercaptan removal facilities as well as any other impurities such as amines which tend to poison the polymerization catalyst. Another use for water wash is in alkylation plants to remove salts from streams, where heating would tend to deposit them out and plug up heat exchanger surfaces. Water washing can be carried out in a mixer- settler, or in a tower if more intimate contacting is necessary. [Pg.98]

Even more important is the stereoregular catalytic polymerization of ethene and other alkenes to give high-density polyethene ( polythene ) and other plastics. A typical Ziegler-Natta catalyst can be made by mixing TiCU and Al2Eti in heptane partial reduction to Ti " and alkyl transfer occur, and a brown suspension forms which rapidly absorbs and polymerizes ethene even at room temperature and atmospheric pressure. Typical industrial conditions are 50- 150°C and 10 atm. Polyethene... [Pg.260]

At the present time the concept of catalytic (or ionic-coordination ) polymerization has been developed by investigating polymerization processes in the presence of transition metal compounds. The catalytic polymerization may be defined as a process in which the catalyst takes part in the formation of the transition complexes of elementary acts during the propagation reaction. [Pg.173]

The propagation center for catalytic polymerization is a chemical compound having an active bond between the catalyst and growing polymer molecule the monomer insertion into this bond occurs as a propagation act. [Pg.174]

In catalytic polymerization the reactivity of the propagation center depends on the catalyst composition. Therefore, the dependence of the molecular structure of the polymer chain mainly on the catalyst composition, and less on the experimental conditions, is characteristic of catalytic polymerization. On the other hand, in polymerization by free-radical or free-ion mechanisms the structure of a polymer is determined by the polymerization conditions (primarily temperature) and does not depend on the type of initiator. [Pg.174]

In essence the active centers for catalytic polymerization of olefins are organometallic complexes of transition metals. For this reason a search for individual organometallic compounds that would possess catalytic activity in olefin polymerization is of great interest. The first attempts to use organometallic compounds of transition metals as catalysts for olefin polymerization were made long ago [e.g. CH3TiCl3 as a catalyst for polymerization of ethylene 116). However, only in recent years as a result of the application of relatively stable organometallic compounds of transition... [Pg.184]

The concept of an active center in catalytic polymerization is much more meaningful as compared with that referred to catalytic processes in... [Pg.194]

The dissociation of coordinatively sufficient organometallic complexes in solution. For instance, for the system based on cyclopentadienyl complexes of titanium the active centers of catalytic polymerization (C Hj) -TiR]+ are caused by the following process (178, 179) ... [Pg.204]

The study of catalytic polymerization of olefins performed up to the present time is certain to hold a particular influence over the progress of the concepts of the coordination mechanism of heterogeneous catalysis. With such an approach the elementary acts of catalytic reaction are considered to proceed in the coordination sphere of one ion of the transition element and, to a first approximation, the collective features of solids are not taken into account. It is not surprising that polymerization by Ziegler-Natta catalysts is often considered together with the processes of homogeneous catalysis. [Pg.213]

In catalytic polymerization the possibility arises of determining the absolute values of the rate constants of individual reactions composing the total process. [Pg.213]

About 50% of all the ethylene produced is used to make polyethylene. There are two main types high density or HDPE and low density or LDPE. HDPE melts higher and is stiffer and harder than LDPE. It is also opaque, while LDPE is flexible and transparent. HDPE is used for molding bottles, housewares, toys, and for extruding pipe and conduit. LDPE is used mainly for packaging film. HDPE is made by a catalytic polymerization at relatively low pressure while LDPE is made by polymerization at very high pressure using a different catalyst. [Pg.121]

Catalytic polymerization is surveyed in Heinemann s paper on advances in catalytic technology. [Pg.68]

Catalytic polymerization, which is implemented in presence of a catalyst such as phosphoric acid in this case, lower temperatures are used and the products are gasoline and unpolymerized gases. The unpolymerized portion is separated and recycled for polymerization. [Pg.102]

The patterned amine materials have been used to construct CGC-inspired sites that were evaluated in the catalytic polymerization of ethylene after activation with MAO. The complexes assembled on a porous silica surface using this methodology are more active than previously reported materials prepared on densely-loaded amine surfaces. This increased activity further suggests the isolated, unique nature of the metal centers. Work is continuing in our laboratory to further characterize the nature of the active sites, as well as to obtain more detailed kinetic data on the catalysts. The patterning methodology is also being applied to the creation of immobilized catalysts for small molecule reactions, such as Heck and Suzuki catalysis. [Pg.277]

B(3,5-(CF3)2C6H3)4-.512 Palladium complexes with a hemilabile terdentate carbene ligand, 1,3-bis(pyl)imidazol-2-ylidene, were active toward the catalytic polymerization of CO/norbornylene.513 Palladium complexes of cz s-bidentate C4-bridged diphosphines cis- and trans- 1,2-bis [(diphenylphosphino)methyl]cyclohexane, e fl o,e fl o-2,3-bis[(diphenylphosphino)methyl] norbornane,... [Pg.183]

The arene organolanthanide system, Nd(C6H6)(AlCl4)3/AliBu3 (Al/Nd = 30), also induces the catalytic polymerization of isoprene to give cis-1,4-polymers having 92-93% selectivity at low conversion (17-36%). Neither the... [Pg.90]

Shindo H, Huang PM (1985b) Catalytic polymerization of hydroquinone by primary minerals. Soil Sci 139 505-511... [Pg.36]


See other pages where Polymerizations catalytic is mentioned: [Pg.160]    [Pg.353]    [Pg.354]    [Pg.367]    [Pg.397]    [Pg.124]    [Pg.225]    [Pg.47]    [Pg.679]    [Pg.175]    [Pg.209]    [Pg.213]    [Pg.72]    [Pg.61]    [Pg.72]    [Pg.400]    [Pg.407]    [Pg.3]    [Pg.276]    [Pg.486]    [Pg.408]    [Pg.415]   
See also in sourсe #XX -- [ Pg.457 ]

See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.299 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.600 ]

See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.563 , Pg.564 ]

See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.103 , Pg.116 ]

See also in sourсe #XX -- [ Pg.261 , Pg.262 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.29 ]




SEARCH



© 2024 chempedia.info