Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent distillation petroleum

Although the principles of multicomponent distillation apply to petroleum, synthetic crude oil, and other complex mixtures, this subject warrants special consideration for the following reasons ... [Pg.99]

Multicomponent distillation, 393 absorption factor method, 398 azeotropic, 420-426 bubblepoint (BP) method, 406-409 computer program references. 404 concentration profiles, 394 distribution of non-kevs. 395 Edmister method, 398,399 extractive, 412, 417-422 feed tray location, 397 free variables, number of 395 Lewis-Matheson method 404 MESH eauations. 405-407 molecular, 425-427 nomenclature, 405 number of theoretical trays, 397 packed towers, 433-439 petroleum, 411-415 reflux, minimum, 397 reflux, operating, 397 SC (simultaneous correction) method, 408-411... [Pg.752]

Feed analyses in terms of component compositions are usually not available for complex hydrocarbon mixtures with a final normal boiling point above about 38°C (100°F) (n-pentane). One method of handling such a feed is to break it down into pseudocomponents (narrow-boiling fractions) and then estimate the mole fraction and K value for each such component. Edmister [Ind. Eng. Chem., 47,1685 (1955)] and Maxwell (Data Book on Hydrocarbons, Van Nostrand, Princeton, N.J., 1958) give charts that are useful for this estimation. Once K values are available, the calculation proceeds as described above for multicomponent mixtures. Another approach to complex mixtures is to obtain an American Society for Testing and Materials (ASTM) or true-boiling point (TBP) curve for the mixture and then use empirical correlations to construct the atmospheric-pressure equihbrium flash vaporization (EFV) curve, which can then be corrected to the desired operating pressure. A discussion of this method and the necessaiy charts is presented in a later subsection Petroleum and Complex-Mixture Distillation. [Pg.16]

Several of the commercial simulation programs offer preconfigured complex column rigorous models for petroleum fractionation. These models include charge heaters, several side strippers, and one or two pump-around loops. These fractionation column models can be used to model refinery distillation operations such as crude oil distillation, vacuum distillation of atmospheric residue oil, fluidized catalytic cracking (FCC) process main columns, and hydrocracker or coker main columns. Aspen Plus also has a shortcut fractionation model, SCFrac, which can be used to configure fractionation columns in the same way that shortcut distillation models are used to initialize multicomponent rigorous distillation models. [Pg.184]

Distillation is still the most common unit operation to separate liquid mixtures in chemical and petroleum industry because the treatment of large product streams and high purities with a simple process design is possible. Despite of this the separation of azeotropic mixtures into pure components requires complex distillation steps and/or the use of an entrainer. Industrial applied processes are azeotropic, extractive or pressure swing distillation (Stichlmair and Fair, 1998). Another sophisticated method for the separation of binary or multicomponent azeotropic mixtures is the hybrid membrane process, consisting of a distillation column and a membrane unit. [Pg.743]

The design methods considered for multicomponent mixtures in Chap. 9 were based on a limited number of definitely known components. In some cases, the mixtures are so complex that the composition with reference to the pure component is not known. This is particularly true of the petroleum naphthas and oils which are mixtures of many series of hydrocarbons, many of the substances present having boiling points so close together that it is practically impossible to separate them into the pure components by fractional distillation or any other means. Even if it were possible to determine the composition of the mixture exactly, there are so many components present that the methods of Chap. 9 would be too laborious. It has become customary to characterize such mixtures by methods other than the amount of the individual components they contain, such as simple distillation or true-boiling-point curves, density, aromaticity (or some other factor related to types of compounds), refractive index, etc. [Pg.325]


See other pages where Multicomponent distillation petroleum is mentioned: [Pg.206]    [Pg.749]    [Pg.390]    [Pg.267]    [Pg.97]    [Pg.307]    [Pg.453]    [Pg.92]   
See also in sourсe #XX -- [ Pg.411 , Pg.412 , Pg.413 , Pg.414 ]

See also in sourсe #XX -- [ Pg.437 , Pg.438 , Pg.439 , Pg.440 ]

See also in sourсe #XX -- [ Pg.411 , Pg.412 , Pg.413 , Pg.414 ]

See also in sourсe #XX -- [ Pg.411 , Pg.412 , Pg.413 , Pg.414 ]

See also in sourсe #XX -- [ Pg.411 , Pg.412 , Pg.413 , Pg.414 ]




SEARCH



Multicomponent distillation

Petroleum Distillate

© 2024 chempedia.info