Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals inductively coupled plasma

Keywords Biomonitoring Birds Feathers Heavy metals Inductively coupled plasma mass spectrometry Pollution Magpie... [Pg.455]

To measure trace metals to the levels required in the guidelines involves the use of state-of-the-art instmmentation such as inductively coupled plasma/mass spectrometry (icp/ms). [Pg.447]

Gold is a useflil caUbration standard for this method (see Radioactive tracers). Whereas similar sensitivities can be achieved by inductively coupled plasma mass spectrometry (qv), the latter requires more extensive sample preparation to overcome interference by other metals such as copper (64). [Pg.381]

Oxygen and nitrogen also are deterrnined by conductivity or chromatographic techniques following a hot vacuum extraction or inert-gas fusion of hafnium with a noble metal (25,26). Nitrogen also may be deterrnined by the Kjeldahl technique (19). Phosphoms is determined by phosphine evolution and flame-emission detection. Chloride is determined indirecdy by atomic absorption or x-ray spectroscopy, or at higher levels by a selective-ion electrode. Fluoride can be determined similarly (27,28). Uranium and U-235 have been determined by inductively coupled plasma mass spectroscopy (29). [Pg.443]

Nickel also is deterrnined by a volumetric method employing ethylenediaminetetraacetic acid as a titrant. Inductively coupled plasma (ICP) is preferred to determine very low nickel values (see Trace AND RESIDUE ANALYSIS). The classical gravimetric method employing dimethylglyoxime to precipitate nickel as a red complex is used as a precise analytical technique (122). A colorimetric method employing dimethylglyoxime also is available. The classical method of electro deposition is a commonly employed technique to separate nickel in the presence of other metals, notably copper (qv). It is also used to estabhsh caUbration criteria for the spectrophotometric methods. X-ray diffraction often is used to identify nickel in crystalline form. [Pg.13]

Trace contaminants in the phosphoms may be deterrnined by oxidation of the phosphoms by various techniques. The metals are then deterrnined by an inductively coupled plasma spectrophotometer or by atomic absorption. The most important trace metal is arsenic, which must be reduced in concentration for food-grade products. Numerous other trace metals have become important in recent years owing to the specifications for electronic-grade phosphoric acid requited by the semiconductor industry (see Electronic materials Semiconductors). Some trace elements must be reduced to the low ppb range in phosphoric acid to comply. [Pg.352]

Ash in terephthahc acid refers to the residue left after combustion of the sample. Ash consists of oxides of trace metals, which are deterrnined individually by atomic absorption or inductively coupled plasma. A Kad Eischer titration is specific for the water content. [Pg.491]

Rubidium metal is commeicially available in essentially two grades, 99 + % and 99.9 + %. The main impurities ate other alkali metals. Rubidium compounds are available in a variety of grades from 99% to 99.99 + %. Manufacturers and suppliers of mbidium metal and mbidium compounds usually supply a complete certificate of analysis upon request. Analyses of metal impurities in mbidium compounds are determined by atomic absorption or inductive coupled plasma spectroscopy (icp). Other metallic impurities, such as sodium and potassium, are determined by atomic absorption or emission spectrograph. For analysis, mbidium metal is converted to a compound such as mbidium chloride. [Pg.280]

A novel interface to connect a ce system with an inductively coupled plasma mass spectrometric (icpms) detector has been developed (88). The interface was built using a direct injection nebulizer (din) system. The ce/din/icpms system was evaluated using samples containing selected alkah, alkaline earths, and heavy-metal ions, as well as selenium (Se(IV) and Se(VI)), and various inorganic and organic arsenic species. The preliminary results show that the system can be used to determine metal species at ppt to ppb level. [Pg.247]

BS ISO 15202 Metals and metalloids Inductively coupled plasma atomic emission spectrometry... [Pg.364]

Samples Analyzed by Inductively Coupled Plasma (ICP) Metals — Where two or more of the following analytes are requested on the same filter, an ICP analysis may be conducted. However, the Industrial Hygienist should specify the metals of interest in the event samples cannot be analyzed by the ICP method. A computer print-out of the following 13 analytes may be typically reported Antimony, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum, Nickel, Vanadium, Zinc. Arsenic — Lead, cadmium, copper, and iron can be analyzed on the same filter with arsenic. [Pg.253]

The inductively coupled plasma source (Fig. 20.11) comprises three concentric silica quartz tubes, each of which is open at the top. The argon stream that carries the sample, in the form of an aerosol, passes through the central tube. The excitation is provided by two or three turns of a metal induction tube through which flows a radio-frequency current (frequency 27 MHz). The second gas flow of argon of rate between 10 and 15 L min-1 maintains the plasma. It is this gas stream that is excited by the radio-frequency power. The plasma gas flows in a helical pattern which provides stability and helps to isolate thermally the outside quartz tube. [Pg.774]

The Production Department was not amused, because lower values had been expected. Quality Control was blamed for using an insensitive, unse-lective, and imprecise test, and thereby unnecessarily frightening top management. This outcome had been anticipated, and a better method, namely polarography, was already being set up. The same samples were run, this time in duplicate, with much the same results. A relative confidence interval of 25% was assumed. Because of increased specificity, there were now less doubts as to the amounts of this particular heavy metal that were actually present. To rule out artifacts, the four samples were sent to outside laboratories to do repeat tests with different methods X-ray fluorescence (XRFi °) and inductively coupled plasma spectrometry (ICP). The confidence limits were determined to be 10% resp. 3%. Figure 4.23 summarizes the results. Because each method has its own specificity pattern, and is subject to intrinsic artifacts, a direct statistical comparison cannot be performed without first correcting the apparent concentrations in order to obtain presumably true... [Pg.229]

Caroli S, Forte G, Iamiceu AL, Galoppi B 1999) Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta 50 327-336. Chiswell B, Johnson D (1994) Manganese. In Seiler HG, Sigel A, Sigel H, eds. Handbook on metals in clinical and analytical chemistry. Dekker, New York. [Pg.230]

Catalyst characterization - Characterization of mixed metal oxides was performed by atomic emission spectroscopy with inductively coupled plasma atomisation (ICP-AES) on a CE Instraments Sorptomatic 1990. NH3-TPD was nsed for the characterization of acid site distribntion. SZ (0.3 g) was heated up to 600°C using He (30 ml min ) to remove adsorbed components. Then, the sample was cooled at room temperatnre and satnrated for 2 h with 100 ml min of 8200 ppm NH3 in He as carrier gas. Snbseqnently, the system was flashed with He at a flowrate of 30 ml min for 2 h. The temperatnre was ramped np to 600°C at a rate of 10°C min. A TCD was used to measure the NH3 desorption profile. Textural properties were established from the N2 adsorption isotherm. Snrface area was calcnlated nsing the BET equation and the pore size was calcnlated nsing the BJH method. The resnlts given in Table 33.4 are in good agreement with varions literature data. [Pg.299]

An inductively coupled plasma formed by passing argon through a quartz torch is widely used for the mass spectroscopic analysis of metal compounds separated by online HPLC.6 Samples are nebulized on introduction into the interface. Plasma impact evaporates solvent, and atomizes and ionizes the analyte. Applications include separation of organoarsenic compounds on ion-pairing F4PLC and vanadium species on cation exchange. [Pg.59]

Young, S. M. M., P. Budd, R. Hagerty, and A. M. Pollard (1997), Inductively coupled plasma mass-spectrometry for the analysis of ancient metals, Archaeometry 39(2), 379-392. [Pg.627]

Inductively coupled plasma atomic emission spectrometry (ICP-AES) is used to screen polymers, liquids and solvent extracts for residual metal atoms (catalysts, fillers, etc.). The technique can provide rapid multi-component screening of elements in solution over a wide concentration range (0.1-1,000 pg/ml). [Pg.571]

The metal content analysis of the samples was effected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES Varian Liberty II Instrument) after microwaves assisted mineralisation in hydrofluoric/hydrochloric acid mixture. Ultraviolet and visible diffuse reflectance spectroscopy (UV-Vis DRS) was carried out in the 200-900 nm range with a Lambda 40 Perkin Elmer spectrophotometer with a BaS04 reflection sphere. HF was used as a reference. Data processing was carried out with Microcal Origin 7.1 software. [Pg.286]

Inductively coupled plasma spectroscopy, used to detect metals in rubber analysis. [Pg.34]

Measurement techniques that can be employed for the determination of trace metals include atomic absorption spectrometry, anodic stripping voltammetry, differential pulse cathodic stripping voltammetry, inductively coupled plasma atomic emission spectrometry, liquid chromatography of the metal chelates with ultraviolet-visible absorption and, more recently, inductively coupled plasma mass spectrometry. [Pg.128]

Many of the published methods for the determination of metals in seawater are concerned with the determination of a single element. Single-element methods are discussed firstly in Sects. 5.2-5.73. However, much of the published work is concerned not only with the determination of a single element but with the determination of groups of elements (Sect. 5.74). This is particularly so in the case of techniques such as graphite furnace atomic absorption spectrometry, Zeeman background-corrected atomic absorption spectrometry, and inductively coupled plasma spectrometry. This also applies to other techniques, such as voltammetry, polarography, neutron activation analysis, X-ray fluroescence spectroscopy, and isotope dilution techniques. [Pg.128]

The extension of inductively coupled plasma (ICP) atomic emission spectrometry to seawater analysis has been slow for two major reasons. The first is that the concentrations of almost all trace metals of interest are 1 xg/l or less, below detection limits attainable with conventional pneumatic nebulisation. The second is that the seawater matrix, with some 3.5% dissolved solids, is not compatible with most of the sample introduction systems used with ICP. Thus direct multielemental trace analysis of seawater by ICP-AES is impractical, at least with pneumatic nebulisation. In view of this, a number of alternative strategies can be considered ... [Pg.258]

Unlike halogenated solvents, it does not produce noxious substances in the inductively coupled plasma, has a very low aqueous solubility, and yields hundredfold concentration in one step. Detection limits ranged from 0.02 jtg/l (cadmium) to 0.6 pg/1 (lead). The results indicate that the proposed procedure should be useful for the precise determination of metals in oceanic water, although a higher sensitivity would be necessary for lead and cadmium. [Pg.261]

Mykytiuk et al. [184] have described a stable isotope dilution sparksource mass spectrometric method for the determination of cadmium, zinc, copper, nickel, lead, uranium, and iron in seawater, and have compared results with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. These workers found that to achieve the required sensitivity it was necessary to preconcentrate elements in the seawater using Chelex 100 [121] followed by evaporation of the desorbed metal concentrate onto a graphite or silver electrode for isotope dilution mass spectrometry. [Pg.287]

Brief mention has been made, particularly in connection with the inductively coupled plasma atomic absorption spectrometric technique, of the need to preconcentrate seawater samples prior to the determination of metals, in order to achieve adequate detection limits. [Pg.303]

Heavy Metals, Isotope Dilution, Spark Source Mass Spectrometry, and Inductively Coupled Plasma Atomic Emission Spectrometry... [Pg.335]


See other pages where Metals inductively coupled plasma is mentioned: [Pg.60]    [Pg.60]    [Pg.4]    [Pg.449]    [Pg.494]    [Pg.177]    [Pg.319]    [Pg.226]    [Pg.364]    [Pg.365]    [Pg.382]    [Pg.309]    [Pg.364]    [Pg.357]    [Pg.76]    [Pg.230]    [Pg.113]    [Pg.148]    [Pg.1013]    [Pg.64]    [Pg.259]    [Pg.279]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Coupled Plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Metal induction

Plasma metals

© 2024 chempedia.info