Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quality control instrumentation

Instrumental quality control before, during, and after manufacture is one area to which food rheology makes important contributions. For example, the measurement of apparent viscosity and yield stress of ketchup helps to predict how well tomato ketchup drains from a bottle. A number of tests have been developed using either basic rheological instruments (rotational viscometer, capillary viscometers, etc.) or instruments simulating the situation in which the rheological properties are of importance (Bostwick... [Pg.2]

ANSI 1995. American National Standards Institute, N42.22-1995. Traceability of Radioactive Sources to NIST and Associated Instrument Quality Control. Washington, DC ANSI. [Pg.438]

The use of "fixed" automation, automation designed to perform a specific task, is already widespread ia the analytical laboratory as exemplified by autosamplers and microprocessors for sample processiag and instmment control (see also Automated instrumentation) (1). The laboratory robot origiaated ia devices coastmcted to perform specific and generally repetitive mechanical tasks ia the laboratory. Examples of automatioa employing robotics iaclude automatic titrators, sample preparatioa devices, and autoanalyzers. These devices have a place within the quality control (qv) laboratory, because they can be optimized for a specific repetitive task. AppHcation of fixed automation within the analytical research function, however, is limited. These devices can only perform the specific tasks for which they were designed (2). [Pg.394]

Quality control elements required by the instrumental analyzer method include analyzer calibration error ( 2 percent of instrument span allowed) verifying the absence of bias introduced by the sampling system (less than 5 percent of span for zero and upscale cah-bration gases) and verification of zero and calibration drift over the test period (less than 3 percent of span of the period of each rim). [Pg.2200]

The analysis was performed by XRF method with SR. SRXRF is an instrumental, multielemental, non-destructive analytical method using synchrotron radiation as primary excitation source. The fluorescence radiation was measured on the XRF beam-line of VEPP-3 (E=2 GeV, 1=100 mA), Institute of Nuclear Physics, Novosibirsk, Russia. For quality control were used international reference standards. [Pg.430]

The synthesis gas cylinder should be installed with an instrument-quality forward pressure regulator, since this will control the experimental pressure of the whole unit. The nitrogen cylinder can have an ordinary regulator, because it is used only for flushing the unit. [Pg.84]

In addition to fulfilling the in-house requirements for quality control, state and local air monitoring networks which are collecting data for compliance purposes are required to have an external performance audit on an annual basis. Under this program, an independent organization supplies externally calibrated sources of air pollutant gases to be measured by the instrumentation undergoing audit. An audit report summarizes the performance of the instruments. If necessary, further action must be taken to eliminate any major discrepancies between the internal and external calibration results. [Pg.224]

Special, fully automated one-task XPS instruments are beginning to appear and will find their way into both quality control laboratories and process control on production lines before long. [Pg.298]

Should you need any new instrumentation, either for monitoring processes or for measuring quality characteristics, you need to make provision for its development. You will need to develop detail specifications of the instrumentation, and design, manufacture, inspect, and install the instruments under controlled conditions which meet the requirements of the standard. [Pg.192]

How do you identify whether any quality control, inspection and testing techniques, and instrumentation requires updating to meet specified requirements ... [Pg.218]

The purpose for which the analytical data are required may perhaps be related to process control and quality control. In such circumstances the objective is checking that raw materials and finished products conform to specification, and it may also be concerned with monitoring various stages in a manufacturing process. For this kind of determination methods must be employed which are quick and which can be readily adapted for routine work in this area instrumental methods have an important role to play, and in certain cases may lend themselves to automation. On the other hand, the problem may be one which requires detailed consideration and which may be regarded as being more in the nature of a research topic. [Pg.6]

Whilst nothing can improve upon the disadvantage of low molar absorption coefficients, instrumental designs and improvements with ratio recording and FT-IR instruments have virtually overcome the accuracy and instrumental limitations referred to in (b) and (c) above. As a result, quantitative infrared procedures are now much more widely used and are frequently applied in quality control and materials investigations. Applications fall into several distinct groups ... [Pg.752]

Photoelectric-Colorimetric Method. Although the recording spectrophotometer is, for food work at least, a research tool, another instrument, the Hunter multipurpose reflectometer (4), is available and may prove to be applicable to industrial quality control. (The newer Hunter color and color difference meter which eliminates considerable calculation will probably be even more directly applicable. Another make of reflection meter has recently been made available commercially that uses filters similar to those developed by Hunter and can be used to obtain a similar type of data.) This instrument is not a spectrophotometer, for it does not primarily measure the variation of any property of samples with respect to wave length, but certain colorimetric indexes are calculated from separate readings with amber, blue, and green filters, designated A, B, and G, respectively. The most useful indexes in food color work obtainable with this type of instrument have been G, which gives a... [Pg.9]

Adequate process control and its associated instrumentation are essential to have product quality control. In some cases the goal is precise adherence to a control point. In others it is simply to maintain the temperature within a comparatively narrow range. [Pg.170]

Adequate PC and its associated instrumentation are essential for product quality control. The goal in some cases is precise adherence to a single control point. In other cases, maintaining the temperature within a comparatively small range is all that is necessary. For effortless controller tuning and the lowest initial cost, the processor should select the simplest controller (of temperature, time, pressure, melt-flow, rate, etc.) that will produce the desired results. [Pg.531]

Repetitive routine analysis of a specific sample (e.g., for Quality Control) will usually require a dedicated instrument. Therefore, the chromatograph and, in particular, the detector will be chosen for that specific analysis. Consequently, only one detector will be necessary and the purchase of an armory of detectors on the basis that they might be needed in the nebulous future is not advised. An alternative detector can always be obtained if and when the demand arises. The same argument applies to multi-solvent reservoirs and multi-solvent gradient programmers and other accessories that are not immediately required for the specific analysis in mind. [Pg.151]

A quality control laboratory had a certain model of HPLC in operation. One of the products that was routinely run on the instrument contained two compounds, A and B, that were quantitated in one run at the same detector wavelength setting. At an injection volume of 20 /tL, both compounds showed linear response. The relatively low absorption for compound B resulted in an uncertainty that was just tolerable, but an improvement was sought. [Pg.277]

Process automation implies the real time acquisition and control of process variables such as temperature, agitation, material delivery, or quality control measurements. As far as the MARS system is concerned, a real time process is just like any instrument. The acquisition module merely requires more interactive monitoring, alarms, and control. This can be accomplished by means of a real time multi-tasking data acquisition module. [Pg.20]

Enzyme Reference Serums. Several companies sell lyophilized or stabilized reference serums for the calibration of instruments and for quality control. The label values given for the enzymatic activity of these serums should never be taken at face value, as at times they may be quite erroneous (19,33). Also, these values should only be used for the assay with which they were standardized, as interconversion of activity from one method to another for the same enzyme may often lead to marked errors. For instance, it is not recommended that alkaline phosphatase expressed in Bodansky units be multiplied by a factor to convert it to the units of the Ring-Armstrong method, or any other method for that matter. [Pg.190]

Permeability is another method for obtaining information about pcirticle diameters. If one packs a tube with a weight of powder exactly equal to its density, and applies a calibrated gas pressure through the tube, the pressure drop can be equated to an average particle size. The instrument based on this principle is called the "Fisher Sub-Sieve Sizer ". Only one value can be obtained but the method is fast and reproducible. The instrument itself is not expensive and the method can be applied to quality control problems of powders. Permeametry is usefiil in the particle range of 0.5 to 50 n. [Pg.245]

G. Quality control information. All critical points, with recommended control procedures and performance criteria, should be identified. If applicable, stopping point(s) should be indicated. Performance specifications for instruments and standard materials should be included. Recommended actions to be taken if performance does not meet the acceptance criteria need to be provided. Sample handling... [Pg.87]

When developing or routinely using an analytical method, quality control (QC) fortifications can be added to each sample at critical points in the procedure to ensure that sensitive steps in the method were conducted properly and to pinpoint where problems occurred if results are less than satisfactory. For example, if the QC fortification samples for detection and cleanup were to show acceptable results in a batch of samples, but the extraction QC spike gave low recovery and/or high variability, then the analyst could modify instrument conditions or altering cleanup parameters immediately. Likewise, if the QC spike added just before analysis gives poor results, then instrument maintenance could be done and the samples merely re-analyzed rather than re-extracted. [Pg.754]


See other pages where Quality control instrumentation is mentioned: [Pg.419]    [Pg.2]    [Pg.207]    [Pg.419]    [Pg.2]    [Pg.207]    [Pg.968]    [Pg.707]    [Pg.410]    [Pg.87]    [Pg.92]    [Pg.287]    [Pg.1]    [Pg.45]    [Pg.319]    [Pg.112]    [Pg.218]    [Pg.747]    [Pg.1043]    [Pg.870]    [Pg.91]    [Pg.51]    [Pg.62]    [Pg.471]    [Pg.9]    [Pg.30]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Electronic materials quality control, instrumental

Instrument control

Instrumentation control

Quality control instrumental

Quality instrumentation

© 2024 chempedia.info