Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscometer rotational

Rheology. Flow properties of latices are important during processing and in many latex appHcations such as dipped goods, paint, inks (qv), and fabric coatings. For dilute, nonionic latices, the relative latex viscosity is a power—law expansion of the particle volume fraction. The terms in the expansion account for flow around the particles and particle—particle interactions. For ionic latices, electrostatic contributions to the flow around the diffuse double layer and enhanced particle—particle interactions must be considered (92). A relative viscosity relationship for concentrated latices was first presented in 1972 (93). A review of empirical relative viscosity models is available (92). In practice, latex viscosity measurements are carried out with rotational viscometers (see Rpleologicalmeasurement). [Pg.27]

The study of flow and elasticity dates to antiquity. Practical rheology existed for centuries before Hooke and Newton proposed the basic laws of elastic response and simple viscous flow, respectively, in the seventeenth century. Further advances in understanding came in the mid-nineteenth century with models for viscous flow in round tubes. The introduction of the first practical rotational viscometer by Couette in 1890 (1,2) was another milestone. [Pg.166]

A rotational viscometer connected to a recorder is used. After the sample is loaded and allowed to come to mechanical and thermal equiUbtium, the viscometer is turned on and the rotational speed is increased in steps, starting from the lowest speed. The resultant shear stress is recorded with time. On each speed change the shear stress reaches a maximum value and then decreases exponentially toward an equiUbrium level. The peak shear stress, which is obtained by extrapolating the curve to zero time, and the equiUbrium shear stress are indicative of the viscosity—shear behavior of unsheared and sheared material, respectively. The stress-decay curves are indicative of the time-dependent behavior. A rate constant for the relaxation process can be deterrnined at each shear rate. In addition, zero-time and equiUbrium shear stress values can be used to constmct a hysteresis loop that is similar to that shown in Figure 5, but unlike that plot, is independent of acceleration and time of shear. [Pg.169]

Orifice viscometers should not be used for setting product specifications, for which better precision is required. Because they are designed for Newtonian and near-Newtonian fluids, they should not be used with thixotropic or highly shear-thinning materials such fluids should be characterized by using multispeed rotational viscometers. [Pg.181]

A number of instmments are based on the extmsion principle, including sHt flow and normal capidary flow (Table 6). These instmments are useful when large numbers of quahty control or other melt viscosity test measurements are needed for batches of a single material or similar materials. When melt viscosities of a wide range of materials must be measured, rotational viscometers are preferable. Extmsion rheometers have been appHed to other materials with some success with adhesives and coatings (10,161). [Pg.183]

Rotational viscometers often were not considered for highly accurate measurements because of problems with gap and end effects. However, corrections can be made, and very accurate measurements are possible. Operating under steady-state conditions, they can closely approximate industrial process conditions such as stirring, dispersing, pumping, and metering. They are widely used for routine evaluations and quahty control measurements. The commercial instmments are effective over a wide range of viscosities and shear rates (Table 7). [Pg.184]

Coaxial (Concentric Cylinder) Viscometer, The eadiest and most common type of rotational viscometer is the coaxial or concentric cylinder instmment. It consists of two cylinders, one within the other (cup and bob), keeping the specimen between them, as shown in Figure 27. The first practical rotational viscometer consisted of a rotating cup with an inner cylinder supported by a torsion wire. In variations of this design the inner cylinder rotates. Instmments of both types ate useful for a variety of apphcations. [Pg.186]

In most rotational viscometers the rate of shear varies with the distance from a wall or the axis of rotation. However, in a cone—plate viscometer the rate of shear across the conical gap is essentially constant because the linear velocity and the gap between the cone and the plate both increase with increasing distance from the axis. No tedious correction calculations are required for non-Newtonian fluids. The relevant equations for viscosity, shear stress, and shear rate at small angles a of Newtonian fluids are equations 29, 30, and 31, respectively, where M is the torque, R the radius of the cone, v the linear velocity, and rthe distance from the axis. [Pg.186]

Dyna.mic Viscometer. A dynamic viscometer is a special type of rotational viscometer used for characterising viscoelastic fluids. It measures elastic as weU as viscous behavior by determining the response to both steady-state and oscillatory shear. The geometry may be cone—plate, parallel plates, or concentric cylinders parallel plates have several advantages, as noted above. [Pg.187]

Controlled Stress Viscometer. Most rotational viscometers operate by controlling the rotational speed and, therefore, the shear rate. The shear stress varies uncontrollably as the viscosity changes. Often, before the stmcture is determined by viscosity measurement, it is destroyed by the shearing action. Yield behavior is difficult to measure. In addition, many flow processes, such as flow under gravity, settling, and film leveling, are stress-driven rather than rate-driven. [Pg.187]

OtherRota.tiona.1 Viscometers. Some rotational viscometers employ a disk as the inner member or bob, eg, the Brookfield and Mooney viscometers others use paddles (a geometry of the Stormer). These nonstandard geometries are difficult to analy2e, particularly for an infinite bath, as is usually employed with the Brookfield and the Stormer. The Brookfield disk has been analy2ed for Newtonian and non-Newtonian fluids and shear rate corrections have been developed (22). Other nonstandard geometries are best handled by determining iastmment constants by caUbration with standard fluids. [Pg.187]

Another type of rotational viscometer is the hehcal-screw rheometer (176). This iastmment is basically a screw-type metering pump that does not pump. The measure of force is the pressure difference resulting from the rotational motion. It is possible to use a bank of pressure transducers of different sensitivities to measure viscosity over a wide range. The iastmment can be used for high temperature rheometry and to foUow polymerkation, shear and heat degradation, and other developments. [Pg.187]

Specific Commercial Rotational Viscometers. Information on selected commercial rotational viscometers can be found ia Table 7. The ATS RheoSystems Stresstech rheometer is an iastmment that combines controlled stress as well as controlled strain (shear rate) and oscillatory measurements. It has a torque range of 10 to 50 mN-m, an angular velocity range of 0 to 300 rad/s, and a frequency range of seven decades. Operation and temperature programming (—30 to 150°C higher temperatures optional) are computer controlled. [Pg.187]

The Cannon Instmment Company produces a line of rotational viscometers, most of which are quite specialized, eg. Cold Cranking Simulators (ASTM D5293) and Mini-Rotary viscometers (ASTM D3829 and D4684) for automotive engine oils. They also have a general use instmment similar to Brookfield s basic viscometer. [Pg.188]

The Nametre Rotary B rotational viscometer measures torque in terms of the current needed to drive the d-c motor at a given speed while a material is under test. The standard sensors are coaxial cylinders or Brookfield disk-type spindles, but a cone—plate system is also available. The viscosity range for the coaxial cylinder sensors is 5 to 5 x 1(T mPa-s, and the maximum shear rate is 200. ... [Pg.189]

Viscoelastic fluids that are more concentrated are characteri2ed with devices that are similar to the rotational viscometers described previously. However, instead of constant rotational motion in one direction, a sinusoidal oscillatory motion is provided. Some instmments allow both viscosity and viscoelastic measurements. [Pg.201]

The shear rate calculated from impeller rotational speed is used to identify a viscosity from a plot of viscosity versus shear rate determined with a capillaiy or rotational viscometer. Next Nr is calculated, and Np is read from a plot like Fig. 18-17. [Pg.1630]

Fig. 19.7. A rotation viscometer. Rotating the inner cylinder shears the viscous glass. The torque (and thus the shear stress aj is measured for a given rotation rate (and thus shear strain rate y). Fig. 19.7. A rotation viscometer. Rotating the inner cylinder shears the viscous glass. The torque (and thus the shear stress aj is measured for a given rotation rate (and thus shear strain rate y).
Note that rotational viscometers give true shear rates and if this is to be used with Newtonian based flow curves then, from above, a correction factor of (4n/3 + 1) needs to be applied to the true shear rate. [Pg.372]

All three methods discussed above appear to provide equally high quality ionic liquid viscosity data. However, the rotational viscometer could potentially provide additional information concerning the Newtonian behavior of the ionic liquids. The capillary method has been by far the most commonly used to generate the ionic liquid viscosity data found in the literature. This is probably due to its low cost and relative ease of use. [Pg.59]

Solving these classes of flow problems requires specific data on the fluid, which is often not in the public literature, or requires laboratory determinations using a rotational viscometer. The results do not allow use of the usual... [Pg.133]

Gel strength, in units of lbf/100 ft , is obtained by noting the maximum dial deflection when the rotational viscometer is turned at a low rotor speed (usually 3 rpm) after the mud has remained static for some period of time. If the mud is allowed to remain static in the viscometer for a period of 10 s, the maximum dial deflection obtained when the viscometer is turned on is reported as the initial gel on the API mud report form. If the mud is allowed to remain static for 10 min, the maximum dial deflection is reported as the 10-min gel. [Pg.653]

The mud rheological properties t, n and K are typically calculated based upon tbe data from two (or more)-spee(l rotational viscometer experiments. For these experiments, the following equations are applicable ... [Pg.832]

In shear studies, the most commonly used type of device for the generation of well-defined flow fields is the rotational viscometer. The use of these devices for the rheological characterization of liquids is well established [137]. Compared with the capillary and jet devices (Sects. 5.1 and 5.2), rotational viscometers allow the investigation of the effects of continuous rather than intermittent shearing. [Pg.160]

Viscosity also is measured with a rotational viscometer. The mud is placed between two concentric cylinders. One cylinder rotates with constant velocity. The other cylinder is connected with a spring. The torque on this cylinder results in a deviation of the position from rest, which may serve as a measure of viscosity. [Pg.32]

Gel strength is obtained with the rotational viscometer when the maximal deflection of the pointer is monitored when the motor is turned on with low speed, the liquid being at rest for a prolonged time before, for example, for 10 minutes. This maximal deflection is referred to as a 10-minute gel. [Pg.32]

Fig. 4.7.9 MRI apparent viscosity-shear rate data in comparison with a conventional rotational viscometer shear viscosity-shear rate data. (Permission granted to reprint Figure 4 on page 517 in Ref. [49].)... Fig. 4.7.9 MRI apparent viscosity-shear rate data in comparison with a conventional rotational viscometer shear viscosity-shear rate data. (Permission granted to reprint Figure 4 on page 517 in Ref. [49].)...
A computer-controlled rheology laboratory has been constructed to study and optimize fluids used in hydraulic fracturing applications. Instruments consist of both pressurized capillary viscometers and concentric cylinder rotational viscometers. Computer control, data acquisition and analysis are accomplished by two Hewlett Packard 1000 computers. Custom software provides menu-driven programs for Instrument control, data retrieval and data analysis. [Pg.105]


See other pages where Viscometer rotational is mentioned: [Pg.276]    [Pg.860]    [Pg.171]    [Pg.178]    [Pg.184]    [Pg.184]    [Pg.184]    [Pg.186]    [Pg.188]    [Pg.188]    [Pg.189]    [Pg.189]    [Pg.369]    [Pg.58]    [Pg.161]    [Pg.238]    [Pg.397]    [Pg.398]    [Pg.281]    [Pg.106]   
See also in sourсe #XX -- [ Pg.369 ]

See also in sourсe #XX -- [ Pg.397 ]

See also in sourсe #XX -- [ Pg.255 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.161 , Pg.162 ]

See also in sourсe #XX -- [ Pg.367 ]

See also in sourсe #XX -- [ Pg.35 ]

See also in sourсe #XX -- [ Pg.214 , Pg.216 ]

See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.96 ]

See also in sourсe #XX -- [ Pg.96 ]

See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Viscometer

Viscometers rotating

© 2024 chempedia.info