Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furnace black

Furnace applications Furnace blacks Furnace dust Furnace linings Furnaces... [Pg.428]

Lead Monoxide. Lead monoxide (litharge), PbO, occurs as a reddish alpha form, which is stable up to 489°C where it transforms to a yellow beta form (massicot). The latter is stable at high temperatures. The solubihty of a-PbO ia water is 0.0504 g/L at 25°C the solubihty of the p-PbO is 0.1065 g/L at 25°C (40). Lead monoxide is amphoteric and dissolves ia both acids and alkahes. In alkahes, it forms the plumbite ion PbO - The monoxide is produced commercially by the reaction of molten lead with air or oxygen ia a furnace. Black or gray oxide is manufactured by the Barton process, by the oxidation of atomized molten lead ia air, as well as by the ball mill process, ia which metallic lead balls of high purity are tumbled ia the mill to form partially oxidized lead particles. [Pg.69]

The production process or the feedstock is sometimes reflected ia the name of the product such as lamp black, acetylene black, bone black, furnace black, or thermal black. The reason for the variety of processes used to produce carbon blacks is that there exists a unique link between the manufactuting process and the performance features of carbon black. [Pg.15]

Retarders were originally arenecarboxylic acids. These acidic materials not only delay the onset of cross-linking but also slow the cross-linking reaction itself. The acidic retarders do not function weU in black-fiUed compounds because of the high pH of furnace blacks. Another type of retarder, A/-nitroso diphenylamine [86-30-6] was used for many years in black-fiUed compounds. This product disappeared when it was recognized that it trans-nitrosated volatile amines to give a several-fold increase in airborne nitrosamines. U.S. production peaked in 1974 at about 1.6 million kg. [Pg.226]

Fillers. Materials used as fillers (qv) in mbber can also be classified as acidic, basic, or neutral. Furnace blacks, ie, HAF, FEF, or SRF, are somewhat basic. As such, they can have an activating effect on sulfur cure rates. Furthermore, carbon blacks have been found to promote formation of mono/disulfide cross-links thereby helping minimize reversion and enhance aging properties. [Pg.242]

Carbon blacks are arbitrarily classified into reinforcing, semireinforcing, and extender blacks. The furnace blacks from NlOO through N400 are... [Pg.243]

A number of processes have been used to produce carbon black including the oil-furnace, impingement (channel), lampblack, and the thermal decomposition of natural gas and acetjiene (3). These processes produce different grades of carbon and are referred to by the process by which they are made, eg, oil-furnace black, lampblack, thermal black, acetylene black, and channel-type impingement black. A small amount of by-product carbon from the manufacture of synthesis gas from Hquid hydrocarbons has found appHcations in electrically conductive compositions. The different grades from the various processes have certain unique characteristics, but it is now possible to produce reasonable approximations of most of these grades by the od-fumace process. Since over 95% of the total output of carbon black is produced by the od-fumace process, this article emphasizes this process. [Pg.539]

Od-fumace blacks used by the mbber iadustry contain over 97% elemental carbon. Thermal and acetylene black consist of over 99% carbon. The ultimate analysis of mbber-grade blacks is shown ia Table 2. The elements other than carbon ia furnace black are hydrogen, oxygen, and sulfur, and there are mineral oxides and salts and traces of adsorbed hydrocarbons. The oxygen content is located on the surface of the aggregates as C O complexes. The... [Pg.542]

A convenient method for assessing the extent of surface oxidation is the measurement of volatile content. This standard method measures the weight loss of the evolved gases on heating up to 950°C in an inert atmosphere. The composition of these gases consists of three principal components hydrogen, carbon monoxide, and carbon dioxide. The volatile content of normal furnace blacks is under 1.5%, and the volatile content of oxidized special grades is 2.0 to 9.5%. [Pg.543]

The ash content of furnace blacks is normally a few tenths of a percent but in some products may be as high as one percent. The chief sources of ash are the water used to quench the hot black from the reactors during manufacture and for wet pelletizing the black. The hardness of the water, and the amount used determines the ash content of the products. The ash consists principally of the salts and oxides of calcium, magnesium, and sodium and accounts for the basic pH (8—10) commonly found in furnace blacks. In some products potassium, in small amounts, is present in the ash content. Potassium salts are used in most carbon black manufacture to control stmcture and mbber vulcanizate modulus (22). The basic mineral salts and oxides have a slight accelerating effect on the vulcanization reaction in mbber. [Pg.543]

Also called channel black and furnace black. Chrome green. [Pg.457]

The weathering properties of polyethylene are improved by the incorporation of carbon blacks. Maximum protection is obtained using blacks with a particle size of 25 p,m and below. In practice finely divided channel or furnace blacks are used at 2-3% concentration and to be effective they must be very well dispersed into the polymer. The use of more than 3% black leads to little improvement in weathering resistance and may adversely affect other properties. [Pg.231]

Soda-ofen, m. soda furnace, black-ash furnace, -riickstande, m.pl. soda residues, tank waste (in the Leblanc process), -salz, n. soda salt (sodium salt), specif, sodium carbonate, -schmelze, /. black ash. -see, m. soda lake, -seife, /. soda soap, -stein, m. caustic soda, -wasser, n. soda water, -zahl, /. soda number. [Pg.413]

This is a more advanced partial combustion process. The feed is first preheated and then combusted in the reactor with a limited amount of air. The hot gases containing carbon particles from the reactor are quenched with a water spray and then further cooled by heat exchange with the air used for the partial combustion. The type of black produced depends on the feed type and the furnace temperature. The average particle diameter of the blacks from the oil furnace process ranges between 200-500 A, while it ranges between 400-700 A from the gas furnace process. Figure 4-4 shows the oil furnace black process. [Pg.119]

The studies by Biermann et al. [28] indicate that the carbon blacks used as the conductive matrix in Leclanche cells remain chemically inert, that is, they do not undergo oxidation during storage or discharge of the cell. However, Caudle et al. [29] found evidence that the ion-exchange properties of carbon black, which exist because of the presence of surface redox groups, are responsible for electrochemical interactions with Mn02. The extent of MnO, reduction to MnOOH depends on the carbon black (i.e., furnace black > acetylene black). [Pg.238]

Carbon blacks are manufactured from hydrocarbon feedstocks by partial combustion or thermal decomposition in the gas phase at high temperatures. World production is today dominated by a continuous furnace black process, which involves the treatment of viscous residual oil hydrocarbons that contain a high proportion of aromatics with a restricted amount of air at temperatures of 1400-1600 °C. [Pg.159]

Rubber which is deliberately rendered electrically conductive by the inclusion in the unvulcanised mix of certain types of carbon black. Conductive rubber for use in, e.g., aircraft tyres has a resistivity below about 105 to 107 ohm-cm. The changeover from the use of channel blacks to oil-based furnace blacks has conferred a degree of conductivity (sometimes unwanted) on many black rubber products, and it should no longer be assumed that any black rubber is a good electrical insulator. See Antistatic Rubber. [Pg.19]

Fast extrusion furnace grade of carbon black. See Furnace Black. [Pg.27]

Any chemical derived from petroleum, the main refining processes being fractional distillation, catalytic cracking and platforming (reforming the constituents with the aid of a platinum catalyst). Since sulphur may be recovered from petroleum refining and since SBR, furnace black and processing oils are all petrochemicals it is... [Pg.46]

Organic accelerators of the thiazole class having delayed action and finding particular application in tyre compounds containing furnace blacks. Sulphenamides are manufactured from mercaptobenzothiazole by reaction with an amine, the nature of which determines the degree of delayed action. [Pg.62]

Carbon blacks are principally made by the chemical decomposition of natural gas or oil. Two classes predominate the furnace blacks (95% of black usage) which are active, and thermal blacks (5% of usage) which are inactive. There are a substantial number of blacks for special applications such as electrically conducting and printing ink blacks. The latter are of too fine a particle size for rubber use. The nomenclature used for carbon blacks includes the ASTM designation and the industry type as illustrated in the next table. [Pg.142]

The surface area of blacks ranges from 20 m2/cm3 (N990 - Medium thermal black) to 225 m2/cm3 (N110 - Super abrasion furnace black). [Pg.143]

The carbon black used in all of these studies was Cabot s Sterling NS (25 m2/g), a furnace black which was extracted of solubles with acetone and hexane and then dried at 60°C. under vacuum. [Pg.336]

Furnace Black One of the three principal processes used for making carbon black the others being the Thermal Black and the Channel Black processes. In the Furnace Black process, aromatic fuel oils and residues are injected into a high velocity stream of combustion gases from the complete burning of an auxiliary fuel with an excess of air. Some of the feedstock is burned, but most of it is cracked to yield carbon black and hydrogen. The products are quenched with water. [Pg.112]

Oilfield drilling fluids, organic titanium compounds in, 25 133 Oilfield emulsions, colloid, 7 274t Oilfield hydraulic fracturing fluids, organic titanium compounds in, 25 133 Oil fields, lithium in, 15 124 Oil-field waters, lithium-bearing, 15 128 Oil filters, phenolic resins in, 18 790 Oil-furnace blacks, 4 762 manufacture, 4 780—785 Oil gas, 6 787... [Pg.643]


See other pages where Furnace black is mentioned: [Pg.15]    [Pg.543]    [Pg.544]    [Pg.544]    [Pg.545]    [Pg.551]    [Pg.552]    [Pg.552]    [Pg.553]    [Pg.555]    [Pg.458]    [Pg.544]    [Pg.120]    [Pg.121]    [Pg.234]    [Pg.235]    [Pg.239]    [Pg.776]    [Pg.30]    [Pg.143]    [Pg.303]    [Pg.387]   
See also in sourсe #XX -- [ Pg.37 ]

See also in sourсe #XX -- [ Pg.9 , Pg.42 ]

See also in sourсe #XX -- [ Pg.88 , Pg.91 , Pg.92 ]

See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Carbon black furnace process

Fast Extrusion Furnace Black

Fullerenes Furnace black

Furnace black process

Furnace black reactor

Furnace black, graphitized

Furnace blacks, structural parameters

Furnace carbon black

High abrasion furnace black

Intermediate super abrasion furnace carbon black

The Furnace Black Process

Tires Furnace black

© 2024 chempedia.info