Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatization with

To solve some of the environmental problems of mixed-acid nitration, we were able to replaee sulfuric acid with solid superacid catalysts. This allowed us to develop a novel, clean, azeotropic nitration of aromatics with nitric acid over solid perfluorinated sulfonic acid catalysts (Nafion-H). The water formed is continuously azeotroped off by an excess of aromatics, thus preventing dilution of acid. Because the disposal of spent acids of nitration represents a serious environmental problem, the use of solid aeid eatalysts is a significant improvement. [Pg.105]

Acid-catalyzed alkylation of aromatics with alcohols themselves is widely used. Whereas tertiary (and secondary) alcohols react with rel-... [Pg.192]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

Ring formation readily occurs ia the alkylation of aromatics with di- and polyhaUdes, eg, the reaction of di- and ttihalomethanes with aromatics ia the presence of aluminum chloride. In the reaction of dichioromethane and ben2ene, besides diaryknethanes, anthracene derivatives are also formed (54). [Pg.555]

Ttihaloacyl aromatics have been prepared by Friedel-Crafts acylation of aromatics with CX COCl (X = Cl, Br) in the presence of AlCl. They are used as monomers in the preparation of polycarbonates, polyesters, polyamides, polyketones, and polyurethanes (91). [Pg.557]

The Gattermann-Koch synthesis is suitable for the preparation of simple aromatic aldehydes from ben2ene and its substituted derivatives, as well as from polycychc aromatics. The para isomers are produced preferentially. Aromatics with meta-directing substituents cannot be formylated (108). [Pg.559]

Zeohtes have recendy been employed as soHd catalysts for the vapor-phase nitration of aromatics with nitric acid. Additional research is required to improve yields and to niinimi2e loss of catalytic activity as the nitration progresses (see Molecularsieves). [Pg.34]

Polynuclear Aromatics. The alkylation of polynuclear aromatics with olefins and olefin-producing reagents is effected by acid catalysts. The alkylated products are more compHcated than are those produced by the alkylation of benzene because polynuclear aromatics have more than one position for substitution. For instance, the alkylation of naphthalene [91-20-3] with methanol over mordenite and Y-type zeoHtes at 400—450°C produces 1-methylnaphthalene [90-12-0] and 2-methylnaphthalene at a 2-/1- ratio of about 1.8. The selectivity to 2-methylnaphthalene [91-57-6] is increased by applying a ZSM-5 catalyst to give a 2-/1- ratio of about 8 (102). [Pg.53]

Synthetic jet fuel derived from coal is even more difficult and expensive, since the best of the conversion processes produces a fuel very high in aromatics. With hydrogenation, overall thermal efficiency is only 50%. Without additional hydrogenation, the gas turbine fuels would contain 60—70% aromatics. [Pg.417]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Alkylation of isobutylene and isobutane in the presence of an acidic catalyst yields isooctane. This reaction proceeds through the same mechanism as dimerization except that during the last step, a proton is transferred from a surrounding alkane instead of one being abstracted by a base. The cation thus formed bonds with the base. Alkylation of aromatics with butylenes is another addition reaction and follows the same general rules with regard to relative rates and product stmcture. Thus 1- and 2-butenes yield j -butyl derivatives and isobutylene yields tert-huty derivatives. [Pg.364]

Feedstocks. Feedstocks are viscous aromatic hydrocarbons consisting of branched polynuclear aromatics with smaller quantities of paraffins and unsaturates. Preferred feedstocks are high in aromaticity, free of coke and other gritty materials, and contain low concentrations of asphaltenes, sulfur, and alkah metals. Other limitations are the quantities available on a long-term basis, uniformity, ease of transportation, and cost. The abiUty to handle such oils in tanks, pumps, transfer lines, and spray nozzles are also primary requirements. [Pg.544]

Only a small fraction of reactant is iavolved ia this step. When naphthenes are iavolved, diradicals are produced. Eor aromatics with side chains, H radicals are produced. [Pg.434]

Some tetrahydro azoles can be aromatized, but this is more difficult than in the corresponding dihydro series. Thus the conversion of pyrazolidines into pyrazoles is accomplished with chloranil. Imidazolidines are aromatized with great difficulty. [Pg.80]

General process for the alkylation of aromatics with olefins Alkylation... [Pg.1320]

Particular reactions can occur in either or both phases or near the interface. Nitration of aromatics with HNO3-H2SO4 occurs in the aqueous phase (Albright and Hanson, eds.. Industrial and Laboratoiy Nitration.s, ACS Symposium Series 22 [1975]). An industrial example of reaction in both phases is the oximation of cyclohexanone, a step in the manufacture of caprolactam for nylon (Rod, Proc. 4th Interna-tional/6th European Symposium on Chemical Reactions, Heidelberg, Pergamon, 1976, p. 275). The reaction between butene and isobutane... [Pg.2116]

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]

The generation of caibocations from these sources is well documented (see Section 5.4). The reaction of aromatics with alkenes in the presence of Lewis acid catalysts is the basis for the industrial production of many alkylated aromatic compounds. Styrene, for example, is prepared by dehydrogenation of ethylbenzene made from benzene and ethylene. [Pg.583]

Treatment of dihalogeno aromatics with lithium amalgam, magnesium, zinc, etc.,... [Pg.122]

Esters of 9-oxo-6,9-dihydro-triazolo[4,5-/]quinoline-8-carboxylic acids 176 can be hydrolyzed and decarboxylated to afford the 9-oxo-6,9-dihydrotriazolo[4, 5-/]quinolines 177 (Scheme 55) (87CCC2918, 88CCC1068,90JMC2640). These in turn were aromatized with POCI3 to the appropriate 9-chloroderivatives 178,... [Pg.257]

An example of the reaction of hydrazones with enynes is reported in a German patent (91GEP4001600). The alkynylpyrazoles were prepared by treating of RNHN=CR C02R2 with CH2=CR 0R" (R =C1, Br R = alkyl) followed by aromatization with acid (Scheme 26). [Pg.13]

The Michael dimerization (activated double bond-amino group interaction) affords the intermediate 211 whose tautomeric form 212 closes the tetrahydropy-ridine cycle 213 which undergoes aromatization with elimination of water and ammonia to isomeric pyridine 214. [Pg.211]


See other pages where Aromatization with is mentioned: [Pg.19]    [Pg.225]    [Pg.385]    [Pg.559]    [Pg.76]    [Pg.66]    [Pg.540]    [Pg.324]    [Pg.555]    [Pg.277]    [Pg.33]    [Pg.48]    [Pg.201]    [Pg.48]    [Pg.16]    [Pg.48]    [Pg.917]    [Pg.319]    [Pg.241]    [Pg.243]    [Pg.253]    [Pg.208]    [Pg.108]    [Pg.150]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



© 2024 chempedia.info