Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid waste forms

Use of specific forms of radiant energy, infrared, ultraviolet, dielectric heating, etc., can allow specific separations to be made. The separation of clear and colored grains of glass and the separation of different metals are possible apphcations of the thermoadhesive method being considered in the field of solid-waste processing. [Pg.1770]

Moisture content. The moisture content of solid wastes usually is expressed as the mass of moisture per unit mass of wet or diy material. In the wet-mass method of measurement, the moisture in a sample is expressed as a percentage of the wet mass of the material in the diy-mass method, it is expressed as a percentage of the diy mass of the material. In equation Form, the wet-mass moisture content is expressed as follows ... [Pg.2232]

Hazardous Wastes When hazardous wastes are generated, special containers are usually provided, and trained personnel (OSHA 1910.120 required such workers to have HAZWOPER training) are responsible (or should be) for the handling of these wastes. Hazardous wastes include solids, sludges, and hquids hence, container requirements vary with the form of waste. [Pg.2235]

The atmospheric movement of pollutants from sources to receptors is only one form of translocation. A second one involves our attempt to control air pollutants at the source. The control of parhculate matter by wet or dry scrubbing techniques 3delds large quantities of waste materials—often toxic—which are subsequently taken to landfills. If these wastes are not properly stored, they can be released to soil or water systems. The prime examples involve the disposal of toxic materials in dump sites or landfills. The Resource Conservation and Recovery Act of 1976 and subsequent revisions are examples of legislation to ensure proper management of solid waste disposal and to minimize damage to areas near landfills (4). [Pg.101]

Listing of solid wastes, quantities, analyses and physical form (e.g. solid, slurry, suspension, sludge) toxicity and flammability. Checking the reliability and legality of waste disposal options, including any transportation offsite. Record keeping. [Pg.535]

Wastewater treatment plants are also a significant source of refinery air emissions and solid wastes. Air releases arise from fugitive emissions from the numerous tanks, ponds, and sewer system drains. Solid wastes are generated in the form of sludges from a number of the treatment units. [Pg.97]

The aluminum smelter solid wastes, in the form of spent pot lining, are disposed of in engineered landfills that feature clay or synthetic lining of disposal pits, provision of soil layers for covering and sealing, and control and treatment of any leachate. Treatment processes are available to reduce hazards associated with spent pot lining prior to disposal of the lining in a landfill. Other solid wastes... [Pg.140]

The specific molecular mechanisms by which PCDDs and PCDFs are initially formed and become part of the PIC remain largely unknown and are theoretical. The theoretical basis for conjecture is derived primarily from direct observations in municipal solid waste incinerators. The emissions of... [Pg.337]

For PM applications, wet scrubbers generate waste in the form of a slurry or wet sludge. This creates the need for both wastewater treatment and solid waste disposal. Initially, the slurry is treated to separate the solid waste from the water. The treated water can then be reused or discharged. Once the water is removed, the remaining waste will be in the form of a solid or sludge. [Pg.440]

Semidry Scrubbers The advantage of semidry scrubbers is in that they remove contaminants by way of a solid waste that is easier to dispose of (less expensive). Initially, the scrubbing medium is wet (such as a lime or soda ash slurry). Then a spray dryer is used to atomize the slurry into the gas which evaporates the water in the droplets. As this takes place, the acid in the gas neutralizes the alkali material and forms a fine white solid. Most of the white solids are removed at the bottom of the scrubber while some are carried into the gas stream and have to be removed by a filter or electrostatic precipitator (discussed later). Although semidry systems cost 5-15% more than wet systems, when combined with a fabric filter, they can achieve 90-95% efficiencies. Dry scrubbers are sometimes used in a very similar fashion, but without the help of gas-liquid-solid mass transfer, these systems use much higher amounts of the solid alkali materials. [Pg.546]

Enter the total pounds of the toxic chemical contained In all wastes from the reporting facility (air emissions, water discharges, solid wastes and off-sIte transfers) generated during the reporting year. This quantity may be the sum of all the release amounts reported on Form R if there is no on-site treatment of the chemical. The quantity will often be greater than the total reported release amounts because it includes waste prior to treatment. [Pg.51]

Information on the types of treatment systems and their treatment efficiencies is required to be entered in Part III, Section 7, of the reporting form. For air emission treatment systems, use code A for wastewater treatment systems use, code W and for solid waste treatment systems, use code S in column 1 of Section 7. Appendix B of the instructions for Form R provides treatment codes to be entered in column B of Section 7. [Pg.84]

Applicabdity Limitations Photolysis is appropriate for difficult-to-treat chemicals (e.g., pesticides, dioxins, chlorinated organics), nitrated wastes, and those chemicals in media which permits photolyzing the waste. The waste matrix can often shield chemicals from the light (e.g., ultraviolet light absorbers, suspended solids, solid wastes). The photolysis process typically requires pretreatment to remove suspended materials, and the by-products formed may be more toxic than the parent molecules. [Pg.148]

Often, the immobilized product has a structural strength sufficient to prevent fracturing over time. Solidification accomplishes the objective by changing a non-solid waste material into a solid, monolithic structure that ideally will not permit liquids to percolate into or leach materials out of the mass. Stabilization, on the other hand, binds the hazardous constituents into an insoluble matrix or changes the hazardous constituent to an insoluble form. Other objectives of solidiflcation/stabilization processes are to improve handling of the waste and pri uce a stable solid (no free liquid) for subsequent use as a construction material or for landfilling. [Pg.176]

For most smaller operators, the waste water discharge from pretreatment equipment, blowdown receivers, and FSHR equipment typically discharges into a city sewer. Most larger factories, process plants, and power stations, on the other hand, incorporate some form of waste water treatment facility to balance the pH level, remove oils and pre-cipitable solids, or otherwise reduce the contamination load before the discharge of water from the site. [Pg.72]

Examples of industrial chemical waste are given in Table 13.1. Common industrial sources of pollution are given in Table 13.2. Since waste can result in pollution, the two terms are often used synonymously. Wastes can be in the form of solid, liquid or gas, or any combination, e.g. solid waste comprises liquid slurries, sludges, thixotropic solids and solids of varying particle sizes. Typical examples are given in Table 13.3. [Pg.331]

Solid effluents arising from metallurgical operations occur principally in two forms fine particulate solids or dusts, and solid wastes. As an example, blast furnace gas may contain up to 170 kg of dust per ton of pig iron produced. Suitable methods must be devised for processing the solid effluents for two reasons (i) to prevent pollution of the environment and (ii) to recover their valuable content, if any. As far as the latter is concerned, reference may be drawn, as an example, to the recovery of rhenium from the exit gas from molybdenite roasting in a multiple-hearth furnace. [Pg.773]

The statutory definition points out that whether a material is a solid waste is not based on the physical form of the material (i.e., whether or not it is a solid as opposed to a liquid or gas), but rather that the material is a waste. The regulations further define solid waste as any material that is discarded by being either abandoned, inherently waste-like, a certain military munition, or recycled (Figure 13.1). These terms are defined as follows ... [Pg.487]

In this study, anaerobic and aerobic processes using sequential two-step UASB/CSTR reactors were found to form a feasible process for treating the leachate from food solid waste. COD removal efficiencies for the first and second anaerobic, aerobic and total system processes were 79%, 42%, 89%, and 98%, respectively. The COD loading rate used ranged from 4.3 to 16kg/m3/d. [Pg.580]

Polar organic compounds such as amino acids normally do not polymerize in water because of dipole-dipole interactions. However, polymerization of amino acids to peptides may occur on clay surfaces. For example, Degens and Metheja51 found kaolinite to serve as a catalyst for the polymerization of amino acids to peptides. In natural systems, Cu2+ is not very likely to exist in significant concentrations. However, Fe3+ may be present in the deep-well environment in sufficient amounts to enhance the adsorption of phenol, benzene, and related aromatics. Wastes from resinmanufacturing facilities, food-processing plants, pharmaceutical plants, and other types of chemical plants occasionally contain resin-like materials that may polymerize to form solids at deep-well-injection pressures and temperatures. [Pg.801]

Information on occupational exposure to lead is obtained primarily from the National Occupational Exposure Survey (NOES) and industry surveys of workers. While occupational exposure is widespread, environmental monitoring data on levels of exposure in many occupations are not available. OSHA has established a permissible exposure limit (PEL) for lead of 50 pg/m3 for workplace air (OSHA 1991). NIOSH has estimated that more than 1 million American workers were occupationally exposed to inorganic lead in more than 100 occupations (NIOSH 1977a, 1978a). According to NOES, conducted by NIOSH between 1980 and 1983, an estimated 25,169 employees were exposed to tetraethyl lead (not used in gasoline since December 31, 1995) approximately 57,000 employees were exposed to various lead oxides mostly in non-ferrous foundries, lead smelters, and battery plants 3,902 employees were exposed to lead chloride and 576,579 employees were exposed to some other form of lead in the workplace in 1980 (NIOSH 1990). Workers who operate and maintain solid waste incinerators are also exposed to air lead levels as high as 2,500 pg/m3 (Malkin 1992). [Pg.423]


See other pages where Solid waste forms is mentioned: [Pg.343]    [Pg.179]    [Pg.343]    [Pg.179]    [Pg.52]    [Pg.2236]    [Pg.2244]    [Pg.41]    [Pg.138]    [Pg.506]    [Pg.84]    [Pg.334]    [Pg.473]    [Pg.167]    [Pg.161]    [Pg.205]    [Pg.739]    [Pg.769]    [Pg.776]    [Pg.179]    [Pg.431]    [Pg.1392]    [Pg.223]    [Pg.296]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Environment solid waste form

Radioactivity from solid waste form

Solid forms

Solid waste

Solid waste form, ground-water

Waste form

© 2024 chempedia.info