Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filters, low-temperature

Use Reinforced plastics automotive parts boat hulls foams encapsulation of electrical equipment protective coatings ducts, flues, and other structural applications low-pressure laminates magnetic tapes piping bottles nonwoven disposable filters low-temperature mortars. [Pg.1009]

For jet fuels, the elimination of free water using filters and coalescers by purging during storage, and the limit of 5 ppm dissolved water are sufficient to avoid incidents potentially attributable to water contamination formation of micro-crystals of ice at low temperature, increased risk of corrosion, growth of micro-organisms. [Pg.250]

In 1990, appioximately 66,000 metric tons of alumina trihydiate [12252-70-9] AI2O2 3H20, the most widely used flame retardant, was used to inhibit the flammabihty of plastics processed at low temperatures. Alumina trihydrate is manufactured from either bauxite ore or recovered aluminum by either the Bayer or sinter processes (25). In the Bayer process, the bauxite ore is digested in a caustic solution, then filtered to remove siUcate, titanate, and iron impurities. The alumina trihydrate is recovered from the filtered solution by precipitation. In the sinter process the aluminum is leached from the ore using a solution of soda and lime from which pure alumina trihydrate is recovered (see Aluminum compounds). [Pg.458]

Positive-displacement meters are normally rated for a limited temperature range. Meters can be constmcted for high or low temperature use by adjusting the design clearance to allow for differences in the coefficient of thermal expansion of the parts. Owing to small operating clearances, filters are commonly installed before these meters to minimize seal wear and resulting loss of accuracy. [Pg.58]

Some additives have the ability to lower the pour point without lowering the cloud point. A number of laboratory scale flow tests have been developed to provide a better prediction of cold temperature operability. They include the cold filter plugging point (CFPP), used primarily in Europe, and the low temperature flow test (LTFT), used primarily in the United States. Both tests measure flow through filter materials under controlled conditions of temperature, pressure, etc, and are better predictors of cold temperature performance than either cloud or pour point for addithed fuels. [Pg.192]

Magnesium trisihcate is prepared by precipitation of a solution of sodium siUcate of the proper composition, ie, MgO to Si02 ratio equal to 1 1.5, using a solution of magnesium chloride or sulfate. The precipitate of the magnesium trisihcate is filtered, washed, and dried at a low temperature. [Pg.200]

In the propane process, part of the propane diluent is allowed to evaporate by reducing pressure so as to chill the slurry to the desired filtration temperature, and rotary pressure filters are employed. Complex dewaxing requires no refrigeration, but depends on the formation of a soHd urea—/ -paraffin complex which is separated by filtration and then decomposed. This process is used to make low viscosity lubricants which must remain fluid at low temperatures (refrigeration, transformer, and hydraulic oils) (28). [Pg.211]

Bismuth vanadate can be produced by chemical precipitation, as weU as by high temperature calciaation methods. In the wet process, the acidic solution of bismuth nitrate, Bi(N02)3, is mixed with the alkaline solution of sodium vanadate, Na VO. The gel formed is filtered off on a filter, pressed, washed, and converted to a crystalline form by calciaation at low temperatures of 200—500°C for 1 h (37,38). [Pg.14]

At Great Salt Lake Minerals Corporation (Utah), solar-evaporated brines are winter-chilled to —3° C in solar ponds. At this low temperature, a relatively pure Glauber s salt precipitates. Ponds are drained and the salt is loaded into tmcks and hauled to a processing plant. At the plant, Glauber s salt is dissolved in hot water. The resulting Hquor is filtered to remove insolubles. The filtrate is then combined with soHd-phase sodium chloride, which precipitates anhydrous sodium sulfate of 99.5—99.7% purity. Great Salt Lake Minerals Corporation discontinued sodium sulfate production in 1993 when it transferred production and sales to North American Chemical Corporation (Trona, California). [Pg.204]

Ammonium bisulfite can be used in place of the sulfur dioxide. The solution is treated with activated carbon and filtered to remove traces of sulfur. Excess ammonia is added and the solution evaporated if the anhydrous crystalline form is desired. The crystals ate dried at low temperature in the presence of ammonia to prevent decomposition (61—63). [Pg.31]

The phenol (Imol) in 5% aqueous NaOH is treated (while cooling) with benzoyl chloride (Imol) and the mixture is stirred in an ice bath until separation of the solid benzoyl derivative is complete. The derivative is filtered off, washed with alkali, then water, and dried (in a vacuum desiccator over NaOH). It is recrystalUsed from ethanol or dilute aqueous ethanol. The benzoylation can also be carried out in dry pyridine at low temperature ca 0°) instead of in NaOH solution, finally pouring the mixture into water and collecting the solid as above. The ester is hydrolysed by refluxing in an alcohol (for example, ethanol, n-butanol) containing two or three equivalents of the alkoxide of the corresponding alcohol (for example sodium ethoxide or sodium n-butoxide) and a few ca 5-10) millilitres of water, for half an hour to three hours. When hydrolysis is complete, an aliquot will remain clear on dilution with four to five times its volume of water. Most of the solvent is distilled off. The residue is diluted with cold water and acidified, and the phenol is steam distilled. The latter is collected from the distillate, dried and either fractionally distilled or recrystalUsed. [Pg.59]

These can be converted to their uranyl nitrate addition compounds. The crude or partially purified ester is saturated with uranyl nitrate solution and the adduct filtered off. It is recrystallised from -hexane, toluene or ethanol. For the more soluble members crystallisation from hexane using low temperatures (-40°) has been successful. The adduct is decomposed by shaking with sodium carbonate solution and water, the solvent is steam distilled (if hexane or toluene is used) and the ester is collected by filtration. Alternatively, after decomposition, the organic layer is separated, dried with CaCl or BaO, filtered, and fractionally distilled under high vacuum. [Pg.60]

Industrial filtration systems may be of many types. The most common type is the baghouse shown in Fig. 29-3. The filter bags are fabricated from woven material, with the material and weave selected to fit the specific application. Cotton and synthetic fabrics are used for relatively low temperatures, and glass cloth fabrics can be used for elevated temperatures, up to 290 C. [Pg.464]

Standard sampling trains are specified for some tests. One of these standards is the system specified for large, stationary combustion sources (4). This train was designed for sampling combustion sources and should not be selected over a simpler sampling train when sampling noncombustion sources such as low-temperature effluents from cyclones, baghouses, filters, etc. (5). [Pg.543]

The reaction mixture is not cooled during the addition of the last two or three portions of phenyl isocyanate, so that the final temperature is near 25° this procedure prevents separation of the sodium salt of cyanophenylurea, which crystallizes readily at low temperatures. For the same reason, the filtered solution of the salt is not precooled, but rather is cooled during the precipitation of the free cyanourea. [Pg.10]

Operating conditions are important determinants of the choice of filter media and sealant used in the cartridges. Some filter media, such as cellulose paper filters, are useful only at relatively low temperatures of 95 to 150"C (200 to 300°F). For high-temperature flue gas streams, more thermally stable filter media, such as nonwoven polyester, polypropylene, or Nomex, must be used. A variety of commercially available sealants such as polyurethane plastic and epoxy will allow fabric operating temperatures up tol50°C (300°F). Selected sealants such as heat cured Plasitcol will withstand operating temperatures up to 200°C (400°F). [Pg.415]

The crystallization of wax from lubricating oil fractions makes better oil. This is done by adding a solvent (often a mixture of benzene and methyl ethyl ketone) to the oil at a temperature of about -5 F. The benzene keeps the oil in solution and maintains fluidity at low temperature the methyl ethyl ketone acts to precipitate the wax. Rotary filters deposit the wax crystals on a sp woven cloth stretched over a perforated cylindrical drum. A vacuum in the drum draws the oil through the perforations. The wax crystals are removed from the cloth by metal scrapers and ol vent-washed to remove oil followed by solvent distillation to remove oil for reuse. [Pg.289]

The ether is left to stand at a low temperature below 10°C when the remaining portion of the product precipitates and is filtered off and added to the first precipitate. The product thus obtained is thoroughly washed, first in water and then in a solution of sodium bicarbonate, and then agein in water. After drying in air, the product is crystallized from anhydrous ethanol or from acetone and water. The analytical data correspond to calculated values. Yield is 18 g MP 122°Cto 124°C. [Pg.521]

The mixture was then hydrogenated at just above atmospheric pressure for 1 A hours and filtered through a Dicalite bed. The clear filtrate was evaporated at low temperature and pressure, and the residue dried in vacuo over phosphorus pentoxide, to give 1.64 g of the salt of Q-(3-thienyl)methylpenici lin as a white solid. [Pg.1482]

The reaction product is filtered and the filtrate is evaporated in vacuo to remove the alcohol. There remains an oily product from which the excess formyl-ethylenedlamine is removed by distillation under 1 mm Hg pressure up to 125°C. The dark yellow, residual product is treated with 10% hydrochloric acid at 100°C for 12 hours to eliminate the formyl group it is evaporated to a syrupy consistency and taken up with ethyl alcohol at the boiling point until complete miscibility is attained it is then discolored over carbon, filtered and stored at low temperature. [Pg.1545]

The second method used to reduce exliaust emissions incorporates postcombustion devices in the form of soot and/or ceramic catalytic converters. Some catalysts currently employ zeolite-based hydrocarbon-trapping materials acting as molecular sieves that can adsorb hydrocarbons at low temperatures and release them at high temperatures, when the catalyst operates with higher efficiency. Advances have been made in soot reduction through adoption of soot filters that chemically convert CO and unburned hydrocarbons into harmless CO, and water vapor, while trapping carbon particles in their ceramic honeycomb walls. Both soot filters and diesel catalysts remove more than 80 percent of carbon particulates from the exliatist, and reduce by more than 90 percent emissions of CO and hydrocarbons. [Pg.335]

The hardness test sometimes is performed on the mud as well as the mud filtrate. The mud hardness indicates the amount of calcium suspended in the mud as well as the calcium in solution. This test usually is made on gypsum-treated muds to indicate the amount of excess CaSO present in suspension. To perform the hardness test on mud, a small sample of mud is first diluted to 50 times its original volume with distilled water so that any undissolved calcium or magnesium compounds can go into solution. The mixture then is filtered through hardened filter paper to obtain a clear filtrate. The total hardness of this filtrate then is obtained using the same procedure used for the filtrate from the low-temperature low-pressure API filter press apparatus. [Pg.657]


See other pages where Filters, low-temperature is mentioned: [Pg.1952]    [Pg.1952]    [Pg.214]    [Pg.406]    [Pg.573]    [Pg.193]    [Pg.193]    [Pg.312]    [Pg.357]    [Pg.116]    [Pg.331]    [Pg.411]    [Pg.415]    [Pg.127]    [Pg.2192]    [Pg.252]    [Pg.77]    [Pg.474]    [Pg.136]    [Pg.112]    [Pg.229]    [Pg.339]    [Pg.563]   
See also in sourсe #XX -- [ Pg.8 , Pg.167 ]

See also in sourсe #XX -- [ Pg.8 , Pg.167 ]




SEARCH



Temperature filters

© 2024 chempedia.info