Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotary filters

The Phillips process is a two-stage crystallisation process that uses a pulsed column in the second stage to purify the crystals (79,80). In the pulsed column, countercurrent contact of the high purity PX Hquid with cold crystals results in displacement of impurities. In the first stage, a rotary filter is used. In both stages, scraped surface chillers are used. This process was commercialized in 1957, but no plants in operation as of 1996 use this technology. [Pg.419]

Horizontal Rotating Pan Filters. These filters (Fig. 10) represent a further development of the tipping pan filter for continuous operation. They consist of a circular pan rotating around the central filter valve. The pan is divided into wedge-shaped sections covered with the filter medium. Vacuum is appHed from below. Each section is provided with a drainage pipe which connects to a rotary filter valve of the same type as in dmm filters. [Pg.395]

The white Hquor is separated from the calcium carbonate by decantation in a clarifier and is then available for a new cooking cycle. The underflow from the clarifier, which contains the calcium carbonate and is referred to as lime mud, is diluted with water and passed to a second clarifier known as the lime mud washer. The clarified weak white Hquor (weak wash) goes to storage and then enters the dissolving tank. The lime mud residue from the lime mud washer is passed to a rotary filter and subsequently to the lime kiln where calcium carbonate is converted back to calcium oxide, thus completing the lime cycle. [Pg.270]

Leaching is 90—95% complete as the soflds exit in the underflow of the first clarifier. Final washing of the soflds (mud) using fresh water takes place in a rotary filter from whence the mud, consisting of 65% H2O, 10—15% BaSO and siUcates, and 10—15% coke, is deflvered to landfill at an approved site. [Pg.478]

The turbo-tray dryer can handle materials from thick slurries [1 million (N s)/m (100,000 cP) and over] to fine powders. It is not suitable for fibrous materials which mat or for doughy or tacky materials. Thin slurries can often be handled by recycle of dry product. Filter-press cakes are granulated before feeding. Thixotropic materials are red directly from a rotary filter by scoring the cake as it leaves the drum. Pastes can be extruded onto the top shelf and subjected to a hot blast of air to make them firm and free-ffowing after one revolution. [Pg.1215]

The crystallization of wax from lubricating oil fractions makes better oil. This is done by adding a solvent (often a mixture of benzene and methyl ethyl ketone) to the oil at a temperature of about -5 F. The benzene keeps the oil in solution and maintains fluidity at low temperature the methyl ethyl ketone acts to precipitate the wax. Rotary filters deposit the wax crystals on a sp woven cloth stretched over a perforated cylindrical drum. A vacuum in the drum draws the oil through the perforations. The wax crystals are removed from the cloth by metal scrapers and ol vent-washed to remove oil followed by solvent distillation to remove oil for reuse. [Pg.289]

A fermentation broth containing Streptomyces kanamyceticus cells is filtered by a vacuum rotary filter. The feed rate is 120kg h1 each kilogram of broth contains 60g of cells. To improve filtration, filter aids are added at a rate of 10kg-h. The concentration of kanamycin in the broth is 0.05%. The filtrate is collected at a rate of 112 kg h. The concentration of kanamycin in the filtrate is 0.045%. The filter cake contains cells, and filter aid is continuously removed from the filter cloth. [Pg.236]

Disc filters are similar in principle to rotary filters, but consist of several thin discs mounted on a shaft, in place of the drum. This gives a larger effective filtering area on a given floor area, and vacuum disc filters are used in preference to drum filters where space is restricted. At sizes above approximately 25 m2 filtration area, disc filters are cheaper but their applications are more restricted, as they are not as suitable for the application of wash water, or precoating. [Pg.413]

A slurry is being filtered at a net rate of 10,000 gal/day by a plate and frame filter with 15 frames, with an active filtering area of 1.5 ft2 per frame, fed by a positive displacement pump. The pressure drop varies from 2 psi at start-up to 25 psi after 10 min, at which time it is shut down for cleanup. It takes 10 min to disassemble, clean out, and reassemble the filter. Your boss decides that it would be more economical to replace this filter with a rotary drum filter using the same filter medium. The rotary filter operates at a vacuum of 200 mmHg with 30% of its surface submerged and rotates at a rate of 5 min/rev. If the drum length is equal to its diameter, how big should it be ... [Pg.414]

The rotary filter breaks down and the operation has to be carried out temporarily in a plate and frame press with frames 0.3 m square. The press takes 120 s to dismantle and 120 s to reassemble, and, in addition, 120 s is required to remove the cake from each frame. If filtration is to be carried out at the same overall rate as before, with an operating pressure difference of 75 kN/m2, what is the minimum number of frames that must be used and what is the thickness of each It may be assumed that the cakes are incompressible and the resistance of the filter media may be neglected. [Pg.71]

A rotary filter, operating at 0.03 Hz, filters at the rate of 0.0075 m3/s. Operating under the same vacuum and neglecting the resistance of the filter cloth, at what speed must the filter be operated to give a filtration rate of 0.0160 m3/s ... [Pg.74]

Filtration is carried out in a plate and frame filter press, with 20 frames 0.3 m square and 50 mm thick, and the rate of filtration is maintained constant for the first 300 s. During this period, the pressure is raised to 350 kN/m2, and one-quarter of the total filtrate per cycle is obtained. At the end of the constant rate period, filtration is continued at a constant pressure of 350 kN/m2 for a further 1800 s, after which the frames are full. The total volume of filtrate per cycle is 0.7 m3 and dismantling and refitting of the press takes 500 s. It is decided to use a rotary drum filter, 1.5 m long and 2.2 m in diameter, in place of the filter press. Assuming that the resistance of the cloth is the same in the two plants and that the filter cake is incompressible, calculate the speed of rotation of the drum which will result in the same overall rate of filtration as was obtained with the filter press. The filtration in the rotary filter is carried out at a constant pressure difference of 70 kN/m2, and the filter operates with 25 per cent of the drum submerged in the slurry at any instant. [Pg.75]

A continuous rotary filter is required for an industrial process for the filtration of a suspension to produce 0.002 m3/s of filtrate. A sample was tested on a small laboratory filter of area 0.023 m2 to which it was fed by means of a slurry pump to give filtrate at a constant rate of 0.0125 m3/s. The pressure difference across the test filter increased from 14 kN/m2 after 300 s filtration to 28 kN/m2 after 900 s, at which time the cake thickness had reached 38 mm. What are suitable dimensions and operating conditions for the rotary filter, assuming that the resistance of the cloth used is one-half that on the test filter,... [Pg.80]

Data from the laboratory filter may be used to find the cloth and cake resistance of the rotary filter. For the laboratory filter operating under constant rate conditions ... [Pg.81]

If the cloth resistance is halved by using the rotary filter, L/v =0.082. As the filter operates at constant pressure, then ... [Pg.81]

A rotary filter which operates at a fixed vacuum gives a desired rate of filtration of a slurry when rotating at 0.033 Hz. By suitable treatment of the filter cloth with a filter aid, its effective resistance is halved and the required filtration rate is now achieved at a rotational speed of 0.0167 Hz (1 rpm). If, by further treatment, it is possible to reduce the effective cloth resistance to a quarter of the original value, what rotational speed is required If the filter is now operated again at its original speed of 0.033 Hz, by what factor will the filtration rate be increased ... [Pg.86]

Mg/day of this sludge is fed to two thickeners where it is washed with 200 Mg/day of neutral water. The pulp removed from the bottom of the thickeners contains 4 kg of water/kg of chalk. The pulp from the last thickener is taken to a rotary filter and concentrated to 50 per cent solids and the filtrate is returned to the system as wash water. Calculate the net percentage of CaCC>3 in the product after drying. [Pg.100]

Some fine char is inevitably carried in the liquid and can only be removed by liquid filtration using, for example, cartridge or rotary filters. Almost all of the ash in the biomass is retained in the char, so successful char removal gives successful ash removal. Char separation, however, is difficult and may not be nec-... [Pg.156]

For the rotary filter, equation 7.18 applies as the whole operation is at constant pressure The maximum throughput will be attained when the cake thickness is a minimum, that is 5 mm or 0.005 m. [Pg.424]

It is decided to use a rotary drum filter, 1.5 m long and 2.2 m in diameter, in place of the filter press. Assuming that the resistance of the cloth is the same in the two plants and that the filter cake is incompressible, calculate the speed of rotation of the drum which will result in the same overall rate of filtration as was obtained with the filter press. The filtration in the rotary filter is carried out at a constant pressure difference of 70 kN/m2, and the filter operates with 25 per cent of the drum submerged in the slurry at any instant. [Pg.1159]

In present-day commercial practice, waxy oil charge is blended with 1 to 3 volumes of liquid propane at a temperature sufficiently high (120° to 160° F.) to ensure complete solution of the wax. The mixture is first cooled by exchange with cold filtrate and then charged to a batch chilling vessel, in which temperature is reduced to that required to obtain the desired pour point of the dewaxed oil, by evaporation of propane from the solution. Cold propane is injected into the vessel in order to maintain the propane-oil ratio approximately constant. The crystallized wax is removed by filtration on a continuous rotary filter (59) under a pressure of about 4 to 8 pounds per square inch. [Pg.168]

Cyclonite in approximately 90% yield is crystallized in the following way the product is separated from the spent acid on a rotary filter and after being washed with water and neutralized with a 5% solution of sodium carbonate it is crystallized from acetone. [Pg.106]

The hot product from the kiln is quenched in water (e), passed via classifiers and hydroseparators (f) into thickeners (g), filtered on rotary filters (b2), and washed until salt-free. The dried product is ground in high-intensity mills (g) and may undergo organic treatment (with a polyalcohol) depending on the application. [Pg.73]

Safety factors for scale up from laboratory leaf tests are difficult to generalize. On the basis of pilot plant work, adjustments of 11-21% are made to plate-and-frame filter areas or rates, and 14-20% to continuous rotary filters, according to Table 1.4. [Pg.318]


See other pages where Rotary filters is mentioned: [Pg.405]    [Pg.454]    [Pg.479]    [Pg.22]    [Pg.229]    [Pg.352]    [Pg.20]    [Pg.20]    [Pg.33]    [Pg.74]    [Pg.86]    [Pg.388]    [Pg.423]    [Pg.931]    [Pg.402]    [Pg.52]    [Pg.53]    [Pg.54]    [Pg.74]    [Pg.90]   
See also in sourсe #XX -- [ Pg.101 , Pg.399 , Pg.523 ]




SEARCH



Example 7.2 Rotary drum filter

Filters continuous rotary

Filtration rotary drum filters

Filtration rotary vacuum filter

Horizontal rotary filter table

Horizontal rotary filters

Internal rotary drum filter

Nutsche filters rotary

Rotary Vacuum Filter Procurement

Rotary disc filter cycle

Rotary disc filters

Rotary disc vacuum filter

Rotary drum filter

Rotary drum filter cycle

Rotary drum filter cycle calculations

Rotary drum filter operating sequence

Rotary drum filters precoat filter

Rotary filter aids

Rotary precoat filter

Rotary pressure drum filter

Rotary pressure filter

Rotary table filters

Rotary vacuum drum filters applications

Rotary vacuum drum filters precoat filter

Rotary vacuum filters

Rotary vacuum precoat filters

Rotary-drum filters vacuum

Vacuum filters horizontal rotary

© 2024 chempedia.info