Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Standard samples

With most non-isothemial calorimeters, it is necessary to relate the temperature rise to the quantity of energy released in the process by determining the calorimeter constant, which is the amount of energy required to increase the temperature of the calorimeter by one degree. This value can be detemiined by electrical calibration using a resistance heater or by measurements on well-defined reference materials [1], For example, in bomb calorimetry, the calorimeter constant is often detemiined from the temperature rise that occurs when a known mass of a highly pure standard sample of, for example, benzoic acid is burnt in oxygen. [Pg.1902]

Figure C2.5.10. The figure gives tire foldability index ct of 27-mer lattice chains witli sets containing different number of amino acids. The sets are generated according to scheme described in [27], The set of 20 amino acids is taken as a standard sample. Each sequence witli 20 amino acids is optimized to fulfil tire stability gap [5]. The residues in tire standard samples are substituted witli four different sets containing a smaller number of amino acids [27]. The foldability of tliese substitutions is indicated by tire full circles. The open diamonds correspond to tire sequences witli same composition. However, tire amino acids are chosen from tire reduced representation and tire resultant sequence is optimized using tire stability gap [5]. Figure C2.5.10. The figure gives tire foldability index ct of 27-mer lattice chains witli sets containing different number of amino acids. The sets are generated according to scheme described in [27], The set of 20 amino acids is taken as a standard sample. Each sequence witli 20 amino acids is optimized to fulfil tire stability gap [5]. The residues in tire standard samples are substituted witli four different sets containing a smaller number of amino acids [27]. The foldability of tliese substitutions is indicated by tire full circles. The open diamonds correspond to tire sequences witli same composition. However, tire amino acids are chosen from tire reduced representation and tire resultant sequence is optimized using tire stability gap [5].
An analytical procedure is often tested on materials of known composition. These materials may be pure substances, standard samples, or materials analyzed by some other more accurate method. Repeated determinations on a known material furnish data for both an estimate of the precision and a test for the presence of a constant error in the results. The standard deviation is found from Equation 12 (with the known composition replacing /x). A calculated value for t (Eq. 14) in excess of the appropriate value in Table 2.27 is interpreted as evidence of the presence of a constant error at the indicated level of significance. [Pg.198]

Interplanar Spacings. Diffractometer alignment procedures require the use of a well-prepared polycrystalline specimen. Two standard samples found to be suitable are silicon and a-quartz (including Novaculite). The 26 values of several of the most intense reflections for these materials are listed in Table 7.6 (Tables of Interplanar Spacings d vs. Diffraction Angle 26 for Selected Targets, Picker Nuclear, White Plains, N.Y., 1966). To convert to d for Ka or to d for Ka2, multiply the tabulated d value (Table 7.6) for Ka by the factor given below ... [Pg.702]

The number and kind of defects in a given specimen, as well as the crystal habit and with it the proportion of different crystal faces exposed, will in general depend in considerable degree on the details of preparation. The production of a standard sample of a given chemical substance, having reproducible adsorptive behaviour, remains therefore as much an art as a science. [Pg.20]

It is, however, possible to use a Type 111 isotherm of an adsorptive G, say, on a solid S for the evaluation of the specific surface of S, provided a standard sample of the solid is available to enable one to construct a standard a,-curve of G on S. The area of the standard sample must be known, usually from the nitrogen isotherm. [Pg.257]

Before a procedure can provide useful analytical information, it is necessary to demonstrate that it is capable of providing acceptable results. Validation is an evaluation of whether the precision and accuracy obtained by following the procedure are appropriate for the problem. In addition, validation ensures that the written procedure has sufficient detail so that different analysts or laboratories following the same procedure obtain comparable results. Ideally, validation uses a standard sample whose composition closely matches the samples for which the procedure was developed. The comparison of replicate analyses can be used to evaluate the procedure s precision and accuracy. Intralaboratory and interlaboratory differences in the procedure also can be evaluated. In the absence of appropriate standards, accuracy can be evaluated by comparing results obtained with a new method to those obtained using a method of known accuracy. Chapter 14 provides a more detailed discussion of validation techniques. [Pg.47]

A standard sample was prepared containing 10.0 ppm of an analyte and 15.0 ppm of an internal standard. Analysis of the sample gave signals for the analyte and internal standard of 0.155 and 0.233 (arbitrary units), respectively. Sufficient internal standard was added to a sample to make it 15.0 ppm in the internal standard. Analysis of the sample yielded signals for the analyte and internal standard of 0.274 and 0.198, respectively. Report the concentration of analyte in the sample. [Pg.131]

To determine which step has the greatest effect on the overall variance, both si, and si must be known. The analysis of replicate samples can be used to estimate the overall variance. The variance due to the method is determined by analyzing a standard sample, for which we may assume a negligible sampling variance. The variance due to sampling is then determined by difference. [Pg.181]

In a particular analysis the selectivity coefficient, Xa.i, is 0.816. When a standard sample known to contain an analyte-to-interferent ratio of 5 1 is carried through the analysis, the error in determining the analyte is +6.3%. (a) Determine the apparent recovery for the analyte if Rj = 0. (b) Determine the apparent recovery for the interferent if Ra = 1 ... [Pg.229]

The amount of Co in an ore sample is to be determined using a procedure for which Fe is an interferent. To evaluate the procedure s accuracy, a standard sample of ore known to have a Co/Fe ratio of 10.2 1 is analyzed. When pure samples of Co and Fe are taken through the procedure, the following calibration relationships are obtained... [Pg.229]

After adding p-rosaniline and formaldehyde, the colored solution was diluted to 25 ml in a volumetric flask. The absorbance was measured at 569 nm in a 1-cm cell, yielding a value of 0.485. A standard sample was prepared by substituting a 1.00-mL sample of a standard solution containing the equivalent of 15.00 ppm SO2 for the air sample. The absorbance of the standard was found to be 0.181. Report the concentration of SO2 in the air in parts per million. The density of air maybe taken as 1.18 g/L. [Pg.453]

A standard sample of 57.22% w/w CE was analyzed by placing 0.1011 g in a 100-mL volumetric flask and diluting to volume. Three unknowns were prepared by pipeting 0.250 mL, 0.500 mL, and 0.750 mL of the bulk unknown into separate 50-mL volumetric flasks and diluting to volume. Analysis of the three unknowns gave areas of 15310, 31546, and 47582, respectively. Evaluate the accuracy of this analysis. [Pg.619]

In a quantitative flow injection analysis a calibration curve is determined by injecting standard samples containing known concentrations of analyte. The format of the caK-bration curve, such as absorbance versus concentration, is determined by the method of detection. CaKbration curves for standard spectroscopic and electrochemical methods were discussed in Chapters 10 and 11 and are not considered further in this chapter. [Pg.655]

Single-operator characteristics are determined by analyzing a sample whose concentration of analyte is known to the analyst. The second step in verifying a method is the blind analysis of standard samples where the analyte s concentration remains unknown to the analyst. The standard sample is analyzed several times, and the average concentration of the analyte is determined. This value should be within three, and preferably two standard deviations (as determined from the single-operator characteristics) of the analyte s known concentration. [Pg.683]

The analysis of a standard sample whose composition is unknown to the analyst. [Pg.683]

A standard sample containing a known amount of analyte was carried through the procedure. The percentage of analyte actually found in the eight trials were found to be... [Pg.686]

A newly proposed method is to be tested for its singleoperator characteristics. To be competitive with the standard method, the new method must have a relative standard deviation of less than 10%, with a bias of less than 10%. To test the method, an analyst performs ten replicate analyses on a standard sample known to contain 1.30 ppm of the analyte. The results for the ten trials are... [Pg.703]

The most useful methods for quality assessment are those that are coordinated by the laboratory and that provide the analyst with immediate feedback about the system s state of statistical control. Internal methods of quality assessment included in this section are the analysis of duplicate samples, the analysis of blanks, the analysis of standard samples, and spike recoveries. [Pg.708]

Internal methods of quality assessment should always be viewed with some level of skepticism because of the potential for bias in their execution and interpretation. For this reason, external methods of quality assessment also play an important role in quality assurance programs. One external method of quality assessment is the certification of a laboratory by a sponsoring agency. Certification is based on the successful analysis of a set of proficiency standards prepared by the sponsoring agency. For example, laboratories involved in environmental analyses may be required to analyze standard samples prepared by the Environmental Protection... [Pg.711]

A standard sample provided by an external agency as part of certifying the quality of a laboratory s work. [Pg.711]

Agency. A second example of an external method of quality assessment is the voluntary participation of the laboratory in a collaborative test (Chapter 14) sponsored by a professional organization such as the Association of Official Analytical Chemists. Finally, individuals contracting with a laboratory can perform their own external quality assessment by submitting blind duplicate samples and blind standard samples to the laboratory for analysis. If the results for the quality assessment samples are unacceptable, then there is good reason to consider the results suspect for other samples provided by the laboratory. [Pg.712]

The use of several QA/QC methods is described in this article, including control charts for monitoring the concentration of solutions of thiosulfate that have been prepared and stored with and without proper preservation the use of method blanks and standard samples to determine the presence of determinate error and to establish single-operator characteristics and the use of spiked samples and recoveries to identify the presence of determinate errors associated with collecting and analyzing samples. [Pg.722]

Discriminant Sensory Analysis. Discriminant sensory analysis, ie, difference testing, is used to determine if a difference can be detected in the flavor of two or more samples by a panel of subjects. These differences may be quantitative, ie, a magnitude can be assigned to the differences but the nature of the difference is not revealed. These procedures yield much less information about the flavor of a food than descriptive analyses, yet are extremely useful eg, a manufacturer might want to substitute one component of a food product with another safer or less expensive one without changing the flavor in any way. Several formulations can be attempted until one is found with flavor characteristics that caimot be discriminated from the original or standard sample. [Pg.3]

Statistical control of an analysis or instmment is best demonstrated by SQC of a standard sample analysis. The preferred approach to demonstrate statistical control is to use a reference sample of the subject material that has been carefully analyzed or, alternatively, to use a purchased reference standard. Either material must be stored so that it remains unchanged, eg, sealed in ampuls or septum capped bottles. Periodically a sample can then be reanalyzed by the technique used for routine analysis. These results are plotted in a control chart. Any change in the stabihty of the test in question results in a lack of... [Pg.367]


See other pages where Standard samples is mentioned: [Pg.1370]    [Pg.2658]    [Pg.1131]    [Pg.1135]    [Pg.61]    [Pg.85]    [Pg.493]    [Pg.616]    [Pg.617]    [Pg.618]    [Pg.646]    [Pg.683]    [Pg.683]    [Pg.699]    [Pg.770]    [Pg.777]    [Pg.813]    [Pg.3]    [Pg.461]    [Pg.18]    [Pg.37]   
See also in sourсe #XX -- [ Pg.683 ]

See also in sourсe #XX -- [ Pg.285 ]




SEARCH



ASTM standards sampling procedures

Australian Standards, sampling

Blind analysis, of standard samples

British Standards sampling procedures

Cell sample preparation standardization

Free standard sample

How to analyse a sample using the method of standard additions in FAAS

Hydrocarbons Standard samples

Internal standards labelled samples

Manufacturers and suppliers of standards, sample

Offsetting sample size against standard deviation

QC-samples and -standards

Relative standard deviation samples

Retention times internal standards, sample matrix effect

Sample Preparation and Choice of Internal Standard

Sample and standard preparation

Sample preparation internal standard

Sample size standard deviation

Samples Raman shift standards

Samples and standards

Sampling population standard deviation

Sampling, Standardization, and Calibration

Standard Practice for Sampling

Standard Sample Preparation

Standard deviation in sampling

Standard deviation of a sample

Standard deviation of sample

Standard deviation of sampling

Standard deviation sample

Standard deviation sampling

Standard deviation with sample size formula

Standard error, sampling

Standard rocks samples

Standard sampling

U.S. EPA ICP-MS Standard Operating Procedure for FGDW Samples

© 2024 chempedia.info