Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl acrylate Production

CgH,oN20. Colourless crystalline solid, m.p. 121 °C. Made by reacting phenylhydrazine with ethyl acrylate to obtain the hydrazide which cyclizes to the product. Its major commercial importance is as a photographic developing agent, being used particularly in conjunction with hydroquinone. [Pg.306]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

Historically, the development of the acrylates proceeded slowly they first received serious attention from Otto Rohm. AcryUc acid (propenoic acid) was first prepared by the air oxidation of acrolein in 1843 (1,2). Methyl and ethyl acrylate were prepared in 1873, but were not observed to polymerize at that time (3). In 1880 poly(methyl acrylate) was reported by G. W. A. Kahlbaum, who noted that on dry distillation up to 320°C the polymer did not depolymerize (4). Rohm observed the remarkable properties of acryUc polymers while preparing for his doctoral dissertation in 1901 however, a quarter of a century elapsed before he was able to translate his observations into commercial reaUty. He obtained a U.S. patent on the sulfur vulcanization of acrylates in 1912 (5). Based on the continuing work in Rohm s laboratory, the first limited production of acrylates began in 1927 by the Rohm and Haas Company in Darmstadt, Germany (6). Use of this class of compounds has grown from that time to a total U.S. consumption in 1989 of approximately 400,000 metric tons. Total worldwide consumption is probably twice that. [Pg.162]

The earliest study describing vulcanised polymers of esters of acryUc acid was carried out in Germany by Rohm (2) before World War I. The first commercial acryUc elastomers were produced in the United States in the 1940s (3—5). They were homopolymers and copolymers of ethyl acrylate and other alkyl acrylates, with a preference for poly(ethyl acrylate) [9003-32-17, due to its superior balance of properties. The main drawback of these products was the vulcanisation. The fully saturated chemical stmcture of the polymeric backbone in fact is inactive toward the classical accelerators and curing systems. As a consequence they requited the use of aggressive and not versatile compounds such as strong bases, eg, sodium metasiUcate pentahydrate. To overcome this limitation, monomers containing a reactive moiety were incorporated in the polymer backbone by copolymerisation with the usual alkyl acrylates. [Pg.474]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

A number of higher poly(vinyl ether)s, in particular the ethyl and butyl polymers, have found use as adhesives. When antioxidants are incorporated, pressure-sensitive adhesive tapes from poly(vinyl ethyl ether) are said to have twice the shelf life of similar tapes from natural rubber. Copolymers of vinyl isobutyl ether with methyl acrylate and ethyl acrylate (Acronal series) and with vinyl chloride have been commercially marketed. The first two products have been used as adhesives and impregnating agents for textile, paper and leather whilst the latter (Vinoflex MP 400) has found use in surface coatings. [Pg.476]

The addition of diazomethane to unsaturated esters (1), as ethyl acrylate, methyl crotonate and ethyl cinnamate, was investigated by Auwers who showed that the primary addition product is a A -pyrazoline (2) which rearranges spontaneously to the conjugated A -pyrazoline (3). [Pg.100]

The reaction of methyl or ethyl acrylate with the enamine of an alicyclic ketone results in simple alkylation when the temperature is allowed to rise uncontrolled in the reaction mixture (7,34,35). If the reaction mixture is kept below 30°C, however, a mixture of the simple alkylated and cyclobutane (from 1,2 cycloaddition) products are obtained (34). Upon distillation of this mixture only starting material and simple alkylated product is obtained because of the instability of the cyclobutane adduct. [Pg.218]

The checkers found that some product codistilled with ethyl acrylate under these conditions, lowering their yield of pure ethyl 2-iodo-3-nitropropionato to 85-87%. They were able to obtain the submitters yield, however, by introducing a slight modification. The flask containing the residue was fitted with an ice water condenser, and vacuum was applied at the top of the condenser. Evacuation at room temperature (0.5 mm.) for 3 hours removed the ethyl acrylate completely with no loss of product. [Pg.67]

An (E)-selective CM reaction with an acrylate (Scheme 61) was applied by Smith and O Doherty in the enantioselective synthesis of three natural products with cyclooxygenase inhibitory activity (cryptocarya triacetate (312), cryptocaryolone (313), and cryptocaryolone diacetate (314)) [142]. CM reaction of homoallylic alcohol 309 with ethyl acrylate mediated by catalyst C led (E)-selectively to d-hydroxy enoate 310 in near quantitative yield. Subsequent Evans acetal-forming reaction of 310, which required the trans double bond in 310 to prevent lactonization, led to key intermediate 311 that was converted to 312-314. [Pg.332]

Scheme 61 (E)-Selective CM with ethyl acrylate in total syntheses of Cryptocaria natural products 312-314 [142]... Scheme 61 (E)-Selective CM with ethyl acrylate in total syntheses of Cryptocaria natural products 312-314 [142]...
Chemoselective alkenylation in the C-3 position of N-substituted 3,5-dichloropyrazin-2(lH)-ones has been described by Van der Eycken et al. [27]. When a mixture of N-substituted 3,5-dichloropyrazin-2(lH)-one, ethyl acrylate, and NEts in DME, using Pd(OAc)2/DTPB [2-(di-f-butylphosphanyl)bi-phenyl] as a precatalyst, was irradiated for 15 min at 150 °C, the desired /1-fimctionabzed ethyl acrylates could be obtained in moderate yields (Scheme 81). When styrene was used as an alkene, a mixture of E and Z products was isolated. The type of catalyst used proved to be important to avoid competitive Diels-Alder reaction of ethyl acrylate with the hetero-diene system of 3,5-dichloro-l-benzylpyrazin-2(lH)-one. [Pg.197]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

Diethylaminobutadiene reacts with ethyl acrylate and exclusively gives 3,4-disubstituted cyclohexene product (Scheme 13a) [13, 14], The reaction of... [Pg.65]

The aziridine aldehyde 56 undergoes a facile Baylis-Hillman reaction with methyl or ethyl acrylate, acrylonitrile, methyl vinyl ketone, and vinyl sulfone [60]. The adducts 57 were obtained as mixtures of syn- and anfz-diastereomers. The synthetic utility of the Baylis-Hillman adducts was also investigated. With acetic anhydride in pyridine an SN2 -type substitution of the initially formed allylic acetate by an acetoxy group takes place to give product 58. Nucleophilic reactions of this product with, e. g., morpholine, thiol/Et3N, or sodium azide in DMSO resulted in an apparent displacement of the acetoxy group. Tentatively, this result may be explained by invoking the initial formation of an ionic intermediate 59, which is then followed by the reaction with the nucleophile as shown in Scheme 43. [Pg.117]

The combination of CsF with Si(OMe)4 58 is an efficient catalyst for Michael additions, e.g. of tetralone 130 to methacrylamide, followed hy cyclization of the addition product to the cyclic enamide 131 in 94% yield [67]. Likewise, addition of the lactone 132 to methyl cinnamate affords, after subsequent cyclization with tri-fluoroacetic acid, the lactam 133 in 58% yield [68] whereas < -valerolactam 134, with ethyl acrylate in the presence of Si(OEt)4 59/CsF, gives 135 in 98% yield [69]. Whereas 10mol% of CsF are often sufficient, equivalent amounts of Si(OEt)4 59 seem to be necessary for preparation of 135 [69] (Scheme 3.11). [Pg.34]

AIBN-promoted addition of PH3 to ethyl acrylate (70 °C, 25 atm of PH3) was reported to give a mixture of hydrophosphination products, including primary, secondary, and tertiary phosphines in ca. 1 1 1 ratio (Scheme 5-10, Eq. 1) [4c]. [Pg.148]

Notably, half of the tertiary product was the telomer 8, which incorporates an additional equivalent of olefin. In contrast, the Pt(0) precatalyst Pt(norbornene)3 (0.2 mol%) gave a 10 1 mixture of tertiary phosphine 9 and telomer 8 over 11 h at 5 5°C in toluene (Scheme 5-10, Eq. 2). The selectivity was higher (>95%) when only the final step [addition of PH(CH2CH2C02Et)2 to ethyl acrylate] was monitored by NMR. In contrast, Pt[P(CH2CH2CF3)3]2(norbomene) did not catalyze addition of PH, to CH2=CHCF3 thus, the olefin must be a Michael acceptor. [11]... [Pg.149]

Even bidentate diphosphines do not act as catalyst poisons. For example, Pt(0) catalyzed smooth addition of ethyl acrylate to 1,2-diphosphinobenzene (Scheme 5-12, Eq. 1) no reaction took place in the absence of Pt(0), and radical initiators gave a mixture of products. [Pg.149]

A P NMR study of stoichiometric reactions using the di-primary phosphine H2PCH2CH2CH2PH2 provided more information on the reaction mechanism (Scheme 5-12, Eq. 2). Norbornene was displaced from Pt(diphosphine)(norbornene) by ethyl acrylate. Reaction with the diphosphinopropane was very fast this gave the hydrophosphination product, which, remarkably, did not bind Pt to give Pt(diphos-phine), instead, Pt(diphosphine)(norbornene) was observed [12]. [Pg.149]

Applications Radiotracer measurements, which combine high sensitivity and specificity with poor spatial resolution, have been used for migration testing. For example, studies have been made on HDPE, PP and HIPS to determine effects of manufacturing conditions on migration of AOs from plastic products into a test fat [443]. Labelled antioxidant was determined radio-analytically after 10 days at 40 °C. Acosta and Sas-tre [444] have used radioactive tracer methods for the determination of styrene ethyl acrylate in a styrene ethyl acrylate copolymer. [Pg.662]

A Michaelis-Arbusov rearrangement followed by a Wittig-Horner reaction is involved in preparation of the distyrylbenzene derivative 11.37, as shown in Scheme 11.15. Precautions must be taken in the first stage to minimise formation of the carcinogenic by-product bis(chloromethyl) ether 11.16. The stilbene bis-ester 11.38 can be made by a similar procedure, or alternatively by the reaction of ethyl acrylate with 4,4 -dibromostilbene in the presence of a palladium-based catalyst (Scheme 11.16), a synthesis that yields the required trans form of the brightener. [Pg.332]

Pyrano[3,2 ]indolizines such as 120 can be prepared from the reaction of N-( 1 -benzotriazolylmethyl)indolines with 3,4-dihydro-2//-pyran under acidic or Lewis-acidic conditions (Equation 26) <2001T4933>, and a simpler analogue 122 is the end product of an annulation process starting from the enamine 121 and ethyl acrylate <1996H(43)1391> (Scheme 34). Pyrano[4,3-/]indolizinetriones, for example, 124, result from the hydrolysis of protected 2,3-dihydro-l//-indolizincdioncs 123 (Equation 27) <2000H(53)771>. [Pg.883]

It is supposed that the nickel enolate intermediate 157 reacts with electrophiles rather than with protons. The successful use of trimethylsilyl-sub-stituted amines (Scheme 57) permits a new carbon-carbon bond to be formed between 157 and electrophiles such as benzaldehyde and ethyl acrylate. The adduct 158 is obtained stereoselectively only by mixing nickel tetracarbonyl, the gem-dibromocyclopropane 150, dimethyl (trimethylsilyl) amine, and an electrophile [82]. gem-Functionalization on a cyclopropane ring carbon atom is attained in this four-component coupling reaction. Phenyl trimethyl silylsulfide serves as an excellent nucleophile to yield the thiol ester, which is in sharp contrast to the formation of a complicated product mixture starting from thiols instead of the silylsulfide [81]. (Scheme 58)... [Pg.132]

Figure 11.11 Pyrogram of a paint sample collected from a decorative frame of the Universal Judgement by Bonamico Buffalmacco (fourteenth century, Monumental Cemetery of Pisa, Italy). Pyrolysis was performed with a microfurnace pyrolyser, at 600°C, in the presence of HMDS. 1, Benzene 2, ethyl acrylate 3, methyl methacrylate 4, acetic acid, trimethyl silyl ester 5, pyrrole 6, toluene 7, 2 methylpyrrole 8, 3 methylpyrrole 9, crotonic acid 10, ben zaldehyde 11, phenol 12, 2 methylphenol 13, 4 methylphenol 14, 2,4 dimethyl phenol 15, benzyl nitrile 16, 3 phenylpropionitrile 17, indole 18, phthalate 19, phthalate 20, ben zyl benzoate HMDS pyrolysis products [27]... Figure 11.11 Pyrogram of a paint sample collected from a decorative frame of the Universal Judgement by Bonamico Buffalmacco (fourteenth century, Monumental Cemetery of Pisa, Italy). Pyrolysis was performed with a microfurnace pyrolyser, at 600°C, in the presence of HMDS. 1, Benzene 2, ethyl acrylate 3, methyl methacrylate 4, acetic acid, trimethyl silyl ester 5, pyrrole 6, toluene 7, 2 methylpyrrole 8, 3 methylpyrrole 9, crotonic acid 10, ben zaldehyde 11, phenol 12, 2 methylphenol 13, 4 methylphenol 14, 2,4 dimethyl phenol 15, benzyl nitrile 16, 3 phenylpropionitrile 17, indole 18, phthalate 19, phthalate 20, ben zyl benzoate HMDS pyrolysis products [27]...
Poly(butyl methacrylate) (PBMA) began to be used as a picture varnish in the early 1930s. It encountered a considerable success because of its resistance to yellowing, adequate flexibility, no dirt pick-up and good solubility in nonpolar hydrocarbon solvents. Products based on PBMA, such as Elvacite 2044 and Elvacite 2045 by Du Pont, were abandoned when it was discovered that under light exposure they cross-link to an unexpected extent becoming insoluble [64]. From this point of view acrylic copolymers based on methyl and ethyl acrylates/methacrylates show a much better long-term stability. [Pg.343]

A tandem palladium catalyzed multi-component approach has been devised providing direct access to for instance trisubstituted thiophenes from the simple starting material 3-iodothiophene 41. In a representative experiment, the substrate 41 was converted to the product 42 by treatment with ethyl acrylate and iodobutane in the presence of a catalytic system consisting of Pd(OAc)2, tri(2-furyl)phosphine (TFP), norbomene, and a base. A mechanistic rationale accounting for this outcome was also proposed <06OL3939>. [Pg.117]

Falbe and Huppes (70) reported that the cobalt hydroformylation of ethyl acrylate at 300 atm and 140°C gave >90% yield of the /8-isomer (10), which was hydrogenated at temperatures of 200°-250°C. The final product was a lactone, as shown in Eq. (30). [Pg.33]

On the basis of available experimental data, it is impossible to choose a definite pathway of elimination of silanol. However, study of silylation of methyl P -nitropropionate (411) with BSA in the presence of trapping agents rigorously proved that silyl nitronate D is initially formed. This compound can be detected in the [3 + 2]-cycloaddition reaction with methyl acrylate product (413). If silylation of AN (411) is performed in the presence of ethyl vinyl ether, a-nitrosoalkene E can be successfully trapped in as heterodiene a Diels-Alder reaction. Dihydroox-azine (414) is formed, and its silylation affords isolable product (415). [Pg.655]

Somei adapted this chemistry to syntheses of (+)-norchanoclavine-I, ( )-chanoclavine-I, ( )-isochanoclavine-I, ( )-agroclavine, and related indoles [243-245, 248]. Extension of this Heck reaction to 7-iodoindoline and 2-methyl-3-buten-2-ol led to a synthesis of the alkaloid annonidine A [247]. In contrast to the uneventful Heck chemistry of allylic alcohols with 4-haloindoles, reaction of thallated indole 186 with 2-methyl-4-trimethylsilyl-3-butyn-2-ol affords an unusual l-oxa-2-sila-3-cyclopentene indole product [249]. Hegedus was also an early pioneer in exploring Heck reactions of haloindoles [250-252], Thus, reaction of 4-bromo-l-(4-toluenesulfonyl)indole (11) under Heck conditions affords 4-substituted indoles 222 [250], Murakami described the same reaction with ethyl acrylate [83], and 2-iodo-5-(and 7-) azaindoles undergo a Heck reaction with methyl acrylate [19]. [Pg.124]

The Michael addition reaction of the serine-derived oxazolidine 326 with ethyl acrylate gave two products. The major product of the reaction was found to be the bicyclic compound 327, which was formed in 27% yield, accompanied by the unsaturated ester 328. The Dess-Martin oxidation of 327 resulted only in formation of the elimination product, the 7,7a-dihydro-177, 377-pyrrolo[l,2-r ]oxazole 328 (Scheme 46) <2001JOC7555>. [Pg.87]


See other pages where Ethyl acrylate Production is mentioned: [Pg.156]    [Pg.162]    [Pg.588]    [Pg.610]    [Pg.220]    [Pg.284]    [Pg.162]    [Pg.120]    [Pg.111]    [Pg.22]    [Pg.68]    [Pg.464]    [Pg.865]    [Pg.181]    [Pg.289]    [Pg.122]    [Pg.441]    [Pg.111]    [Pg.315]    [Pg.315]   
See also in sourсe #XX -- [ Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 ]




SEARCH



Acrylates ethyl acrylate

Ethyl production

© 2024 chempedia.info