Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensers, air water

Specific correlations of individual film coefficients necessarily are restricted in scope. Among the distinctions that are made are those of geometry, whether inside or outside of tubes for instance, or the shapes of the heat transfer surfaces free or forced convection laminar or turbulent flow liquids, gases, liquid metals, non-Newtonian fluids pure substances or mixtures completely or partially condensable air, water, refrigerants, or other specific substances fluidized or fixed particles combined convection and radiation and others. In spite of such qualifications, it should be... [Pg.182]

You see that vacuum adapter stuck to the top of the condenser in fig. 7a Well, a closer look at it in fig. 7b will show that it has some drying agent sandwiched between two cotton balls and the nipple (tee heel) sealed with plastic wrap or foil. The drying agent can be either a commercial product called Drierite or calcium chloride. This attachment is placed on top of a condenser when refluxing solutions that have no water in them and must remain that way during the time they are refluxed. All this is to prevent moisture in the outside air from coming into contact with the cold surface of the of the inside walls of the condenser. This will surely happen and the condensed outside-air water will drip down into the reaction flask and ruin the experiment. This is not so much a... [Pg.26]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

Secondary smoke is produced mosdy by the condensation of water in humid or cold air. The presence of hydrogen chloride or hydrogen fluoride in the combustion products increases the extent and rate of condensation. Composition modifications to reduce primary smoke may reduce secondary smoke to some extent, but complete elimination is unlikely. The relatively small amount of smoke produced in gun firings by modem nitrocellulose propellants, although undesirable, is acceptable (102—109). [Pg.41]

In work with the hydrogen chloride-air-water system, Dobratz, Moore, Barnard, and Mever [Chem. Eng. Prog., 49, 611 (1953)] using a cociirrent-flowsystem found that /cg (Eig. 14-77) instead of the 0.8 power as indicated by the Gilliland equation. Heat-transfer coefficients were also determined in this study. The radical increase in heat-transfer rate in the range of G = 30 kg/(s m ) [20,000 lb/(h fH)] was similar to that obsei ved by Tepe and Mueller [Chem. Eng. Prog., 43, 267 (1947)] in condensation inside tubes. [Pg.1402]

When a liquid or solid substance is emitted to the air as particulate matter, its properties and effects may be changed. As a substance is broken up into smaller and smaller particles, more of its surface area is exposed to the air. Under these circumstances, the substance, whatever its chemical composition, tends to combine physically or chemically with other particles or gases in the atmosphere. The resulting combinations are frequently unpredictable. Very small aerosol particles (from 0.001 to 0.1 Im) can act as condensation nuclei to facilitate the condensation of water vapor, thus promoting the formation of fog and ground mist. Particles less than 2 or 3 [Lm in size (about half by weight of the particles suspended in urban air) can penetrate the mucous membrane and attract and convey harmful chemicals such as sulfur dioxide. In order to address the special concerns related to the effects of very fine, iuhalable particulates, EPA replaced its ambient air standards for total suspended particulates (TSP) with standards for particlute matter less than 10 [Lm in size (PM, ). [Pg.2173]

Experimental data in small equipment has shown that condensation of water vapor causes a twofold increase in the maximum flow rate compared to dry air, and a fourfold increase in condensation of methanol vapor. [Pg.2336]

The real atmosphere is more than a dry mixture of permanent gases. It has other constituents—vapor of both water and organic liquids, and particulate matter held in suspension. Above their temperature of condensation, vapor molecules act just like permanent gas molecules in the air. The predominant vapor in the air is water vapor. Below its condensation temperature, if the air is saturated, water changes from vapor to liquid. We are all familiar with this phenomenon because it appears as fog or mist in the air and as condensed liquid water on windows and other cold surfaces exposed to air. The quantity of water vapor in the air varies greatly from almost complete dryness to supersaturation, i.e., between 0% and 4% by weight. If Table 2-1 is compiled on a wet air basis at a time when the water vapor concentration is 31,200 parts by volume per million parts by volume of wet air (Table 2-2), the concentration of condensable organic vapors is seen to be so low compared to that of water vapor that for all practical purposes the difference between wet air and dry air is its water vapor content. [Pg.21]

The partial pressure of water vapor in air cannot be higher than the vapor pressure of saturated water ft (T) corresponding to air temperature T. If it were higher, condensation of water vapor would occur until the equilibrium state corresponding to the saturated vapor pressure was achieved. [Pg.71]

Another interesting class of phase transitions is that of internal transitions within amphiphilic monolayers or bilayers. In particular, monolayers of amphiphiles at the air/water interface (Langmuir monolayers) have been intensively studied in the past as experimentally fairly accessible model systems [16,17]. A schematic phase diagram for long chain fatty acids, alcohols, or lipids is shown in Fig. 4. On increasing the area per molecule, one observes two distinct coexistence regions between fluid phases a transition from a highly diluted, gas -like phase into a more condensed liquid expanded phase, and a second transition into an even denser... [Pg.635]

Because of the price diffferential between low- and high-efficiency condensing furnaces, only 22 percent of gas furnaces sold in the mid-1990 s were high-effi-ciency condensing-type furnaces. Condensate is water that forms as a result of the combustion process. When the hydrogen in the fuel combines with oxygen from the combustion air, it forms water... [Pg.542]

Christman, J., Vacuum Steam Condensers Air vs. Water Cooling, Hydrocarbon Processing, Sept. (1980) p. 257. [Pg.286]

On this system, the turbine is speed controlled and passes steam, depending on the electrical demand. The bypass-reducing valve with integral desuperheater makes up any deficiency in the steam requirements and creates an exhaust steam pressure control. Alternatively, any surplus steam can be bypassed to a dump condenser, either water or air cooled, and returned to the boiler as clear condensate. [Pg.184]

Where water is used as a cooling medium for compressor and ancillary equipment it should be within the temperature and pressure levels prescribed by the compressor supplier and should be free from harmful impurities. The cooling water should have a low inlet temperature in order to assist in achieving a high volumetric efficiency in the compressor and to cool the air passing through the aftercooler to a temperature adequate for effective condensation of water vapor. [Pg.548]

The problem with a conventional system that relies on heat exchangers (i.e. aftercoolers) for moisture removal is temperature. The aftercooler will remove only liquids that have condensed at a temperature between the compressed air and cooling water temperature. In most cases, this differential will be about 20 to 50° lower than the compressed air temperature or around 70 to 90°F. As long as the compressed air remains at or above this temperature range, any remaining vapor that it contains will remain in a vapor or gaseous state. However, when the air temperature drops below this range, additional vapor will condense into water. [Pg.640]

Mass transfer may take place from a mixture of gases, such as the condensation of water from moist air. In this instance, the water vapour has to diffuse through the air, and the rate of mass transfer will depend also on the concentration of vapour in the air. In the air-water vapour mixture, the rate of mass transfer is roughly proportional to the rate of heat transfer at the interface and this simplifies predictions of the performance of air-conditioning coils [1,5, 9]. [Pg.13]

Ambient dry bulb temperature for air-cooled condensers Available water temperature for water-cooled condensers Ambient wet bulb temperature for evaporative types... [Pg.75]

With air-cooled condensers and water cooling towers it is possible to reduce the air flow hy automatic dampers, fan speed control, or switching off fans, where two or more drives are fitted. The control should work from pressure hut can he made to work from temperature (see Section 6.12). [Pg.112]

Air-cooled condensers require a large air flow for a given heat rejection duty and the limitation on their use is reached on account of their size and the need to get enough air. Water or evaporative cooling should always be considered as a possibility, except for smaller sizes or where using packaged condensing units. [Pg.126]

The siting of a packaged unit is more critical than that of separate plant, since all components are together, and a compromise may have to be reached between the convenience of having the unit close to the load and the difficulty of obtaining condenser air or water, transmitting extra noise, or creating new safety aspects. [Pg.158]

A similar effect occurs if the air is brought into contact with a solid surface, maintained at a temperature below its dew point. Sensible heat will be transferred to the surface by convection and condensation of water vapour will take place at the same time. Both the sensible and latent heats must be conducted through the solid and removed. The simplest form is a metal tube, and the heat is carried away by refrigerant or a chilled fluid within the pipes. This coolant must be colder than the tube surface to transfer the heat inwards through the metal. [Pg.249]

Air/water vapor mixture, chart, 364,365 Air/water vapor, 359 Capacity at ejector suction, 369 Capacity for process vapor, 362 Evacuation time, 371, 380 Load for steam surface condenser, 367 Non-condensables, 362, 363 Size selection, 371 Steam pressure factor, 373 Steam requirements, 372 Steain/air mixture temperature, 361 Total weight saturated mixture, 362 Capacity, 358 Discharge, pressure, 358 Effect of excess steam pressure, 358 Effects of back pressure, 359 Effects of wet steam, 356 Inter-and-after condenser, 351 Load variation, 370 Materials of construction, 347 Molecular weight entrainment, chart, 360 Performance, 358, 370, 375 Relative comparison, 357... [Pg.626]

In order that hot condenser water may be re-used in a plant, it is normally cooled by contact with an air stream. The equipment usually takes the form of a tower in which the hot water is run in at the top and allowed to flow downwards over a packing against a countercurrent flow of air which enters at the bottom of the cooling tower. The design of such towers forms an important part of the present chapter, though at the outset it is necessary to consider basic definitions of the various quantities involved in humidification, in particular wet-bulb and adiabatic saturation temperatures, and the way in which humidity data are presented on charts and graphs. While the present discussion is devoted to the very important air-water system, which is in some ways unique, the same principles may be applied to other liquids and gases, and this topic is covered in a final section. [Pg.738]

Even though upward motion causes cooling of a parcel of air, the condensation of water vapor can maintain the temperature of a parcel of air above that of the surrounding air. When this happens, the parcel is buoyant and may accelerate further upwards. Indeed, this is an unstable situation which can result in violent updrafts at velocities of meters per second. Cumulus clouds are produced in this fashion, with other phenomena such as lightning, heavy precipitation and locally strong horizontal winds below the cloud (which provide the air needed to support the vertical motion). [Pg.137]

Global velocity distribution behind flame front. Upward propagation in 5.15% methane/air mixture, (a) vector map, (b) and (c) scalar maps of axial and radial velocity components, respectively. Spots are caused by condensation of water vapor on the glass walls. [Pg.19]

Initially, the compression does not result in surface pressure variations. Molecnles at the air/water interface are rather far from each other and do not interact. This state is referred to as a two-dimensional gas. Farther compression results in an increase in snrface pressure. Molecules begin to interact. This state of the monolayer is referred as two-dimensional liquid. For some compounds it is also possible to distingnish liqnid-expanded and liquid-condensed phases. Continnation of the compression resnlts in the appearance of a two-dimensional solid-state phase, characterized by a sharp increase in snrface pressure, even with small decreases in area per molecule. Dense packing of molecnles in the mono-layer is reached. Further compression results in the collapse of the monolayer. Two-dimensional structure does not exist anymore, and the mnltilayers form themselves in a non-con trollable way. [Pg.141]

Nevertheless, the shape of the isotherm in Fignre 3 is qnite similar to those of molecular films in their solid condensed state. This reflects the strong tendency of the particles to aggregate at the air-water interface. Visnal inspection dnring spreading indicates the for-... [Pg.219]


See other pages where Condensers, air water is mentioned: [Pg.98]    [Pg.253]    [Pg.1540]    [Pg.2183]    [Pg.153]    [Pg.34]    [Pg.473]    [Pg.59]    [Pg.491]    [Pg.642]    [Pg.332]    [Pg.491]    [Pg.76]    [Pg.437]    [Pg.375]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 , Pg.43 ]




SEARCH



Air-condensers

Water condensation

Water-condensers

© 2024 chempedia.info