Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloadditions 6+2—1 product

A ver promising reactivity of A-2-thiazoline-4-one has been found recently. 5-Aryl-A-2-thiazoline-4-one (190) gives the 1.3-dipolar cycloaddition product (191) with methyl fumarate and methyl maleate... [Pg.425]

Scheme 99) (416). The 4-acetyloxy-5-ary]thiazo]e or 4-methoxy-5-arylthiazole, which are models of the protomer (174b) do not give cycloaddition products under the same experimental conditions. This rules out the possibility of a Diels-Alder reaction involving the protomer (174b) (416). [Pg.426]

Give the structure of the cycloaddition product formed when benzyne is generated in the presence of furan (See Section 11 22 if necessary to remind yourself of the structure of furan )... [Pg.986]

The reaction of dihalocarbenes with isoprene yields exclusively the 1,2- (or 3,4-) addition product, eg, dichlorocarbene CI2C and isoprene react to give l,l-dichloro-2-methyl-2-vinylcyclopropane (63). The evidence for the presence of any 1,4 or much 3,4 addition is inconclusive (64). The cycloaddition reaction of l,l-dichloro-2,2-difluoroethylene to isoprene yields 1,2- and 3,4-cycloaddition products in a ratio of 5.4 1 (65). The main product is l,l-dichloro-2,2-difluoro-3-isopropenylcyclobutane, and the side product is l,l-dichloro-2,2-difluoro-3-methyl-3-vinylcyclobutane. When the dichlorocarbene is generated from CHCl plus aqueous base with a tertiary amine as a phase-transfer catalyst, the addition has a high selectivity that increases (for a series of diolefins) with a decrease in activity (66) (see Catalysis, phase-TRANSFEr). For isoprene, both mono-(l,2-) and diadducts (1,2- and 3,4-) could be obtained in various ratios depending on which amine is used. [Pg.465]

The anhydride of thiophene-2,3-dlcarboxylic acid is of interest as a precursor of 2,3-didehydrothiophene. Evidence for the generation of this elusive intermediate is obtained by the isolation of [4-1-2] and [2-1-2] cycloaddition products with dienes (81T4151). [Pg.72]

A pair of stereoisomeric 1,3-cycloaddition products having the 1,2,3-triphenyloctahy-droisoindole skeletal structure (100) is formed upon photolysis of (99) in cyclohexene (68T2193). [Pg.61]

A more conventional cycloaddition occurs with activated acetylenes, however, the intermediate cyclobutene adducts undergo rearrangement to give insertion of two carbon atoms into the enamine chain (55). Thus the enamine (16) reacted with methyl propiolate to give the dienamino ester (73), presumably via the cycloaddition product (65a). [Pg.130]

Enamines of cyclic ketones do not form cycloaddition products, but give the mono- or dicarboxanilides (110,111). Thus the enamine (113) on reaction with 1 equivalent of phenyl isocyanate gave 160. Treatment of 113 with 2 equivalents, or 160 with 1 equivalent, of phenyl isocyanate gave the 2,6-disubstituted product (161). Mild acid hydrolysis of 160 and 161 produced the corresponding cyclohexanone(2-mono- and 2,5-di)carbox-anilides (110). [Pg.150]

The reaction of methyl or ethyl acrylate with the enamine of an alicyclic ketone results in simple alkylation when the temperature is allowed to rise uncontrolled in the reaction mixture (7,34,35). If the reaction mixture is kept below 30°C, however, a mixture of the simple alkylated and cyclobutane (from 1,2 cycloaddition) products are obtained (34). Upon distillation of this mixture only starting material and simple alkylated product is obtained because of the instability of the cyclobutane adduct. [Pg.218]

The reaction of an alicyclic enamine with benzyne intermediate yields simple arylation products and/or 1,2-cycloaddition products, depending upon the reaction conditions 102). This is illustrated by the reaction of l-(N-pyrrolidino)cyclohexene with benzyne (86) (obtained from fluoro-benzene and butyl lithium or o-bromofluorobenzene and lithium amalgam), which produces benzocyclobutene 87 102). [Pg.232]

Furoxan nitrolic acid 34 was converted into isoxazoline 36 (96% yield) on storage in CH2CI2 solution in the presence of water (93CHE1099, 93KGS1283) (Scheme 12). The intermediate 35 could be trapped as [3 + 2] cycloaddition product 37. Reaction of nitrolic acid 34 with an excess of N2O4 also occurred via 35, giving 3-cyano-4-nitrofuroxan 38. [Pg.72]

A -Alkyl-l,2-dihydropyridines that are not stabilized by electron-withdrawing groups on the ring could behave as dienophiles towards alkynes. For example, N-methyl-l,2-dihydropyridine 41a reacts with dimethyl acetylenedicarboxylate (32) to give [2 + 2] cycloaddition product 42, which rearranges to give the azocine derivative 43 [74JCS(P1)2496],... [Pg.278]

There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

The reaction course of the cycloaddition reaction can also be dependent on the Lewis acid complex used as the catalyst. When the substrate contains an allylic C-H bond, both a cycloaddition and an ene reaction can occur. In the reaction of glyoxylate 4 with 2,3-dimethyl-l,3-butadiene 5 both the cycloaddition product 6... [Pg.154]

On the basis of the absolute configuration of the cycloaddition product 4, formed in the reaction catalyzed by (R)-8e, model calculations using (J )-8d show that the preferred geometry for the intermediate is one in which the two oxygen... [Pg.157]

The mechanism of the cycloaddition reaction of benzaldehyde 2a with Danishefsky s diene 3a catalyzed by aluminum complexes has been investigated theoretically using semi-empirical calculations [14]. It was found that the reaction proceeds as a step-wise cycloaddition reaction with the first step being a nucleophilic-like attack of Danishefsky s diene 2a on the coordinated carbonyl compound leading to an aldol-like intermediate which is stabilized by interaction of the cation with the oxygen atom of the Lewis acid. The next step is the ring-closure step, giving the cycloaddition product. [Pg.159]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

A series of chiral boron catalysts prepared from, e.g., N-sulfonyl a-amino acids has also been developed and used in a variety of cycloaddition reactions [18]. Corey et al. have applied the chiral (S)-tryptophan-derived oxazaborolidine-boron catalyst 11 and used it for the conversion of, e.g., benzaldehyde la to the cycloaddition product 3a by reaction with Danishefsky s diene 2a [18h]. This reaction la affords mainly the Mukaiyama aldol product 10, which, after isolation, was converted to 3a by treatment with TFA (Scheme 4.11). It was observed that no cycloaddition product was produced in the initial step, providing evidence for the two-step process. [Pg.160]

Keck et al. reported that a catalyst generated from (S)- or (l )-BINOL 12 and Ti(0-i-Pr)4 in a 2 1 ratio is more selective than the catalyst formed from a 1 1 mixture [19fj. The former catalyst was shown to catalyze the cycloaddition reaction of aldehydes 1 with Danishefsky s diene 2a affording the dihydropyrones 3 with moderate to excellent enantioselectivity (Scheme 4.12). The reaction proceeds well for different aldehydes with up to 97% ee and good yield of the cycloaddition products. [Pg.161]

The dihydropyrones are not produced directly in the initial BINOL-titanium(IV)-cat-alyzed reaction. The major product at this stage is the Mukaiyama aldol product which is subsequently cyclized by treatment with TFA [19fj. The formal cycloaddition product 3d (97% ee) obtained from a-(benzyloxy)acetaldehyde is an important intermediate for compactin and mevinolin. Scheme 4.13 outlines how the structural subunit 13 is available in three steps via this cycloaddition approach [19 fj. [Pg.161]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Danishefsky et al. were probably the first to observe that lanthanide complexes can catalyze the cycloaddition reaction of aldehydes with activated dienes [24]. The reaction of benzaldehyde la with activated conjugated dienes such as 2d was found to be catalyzed by Eu(hfc)3 16 giving up to 58% ee (Scheme 4.16). The ee of the cycloaddition products for other substrates was in the range 20-40% with 1 mol% loading of 16. Catalyst 16 has also been used for diastereoselective cycloaddition reactions using chiral 0-menthoxy-activated dienes derived from (-)-menthol, giving up to 84% de [24b,c] it has also been used for the synthesis of optically pure saccharides. [Pg.163]

Chiral boron(III) complexes can catalyze the cycloaddition reaction of glyoxy-lates with Danishefsky s diene (Scheme 4.18) [27]. Two classes of chiral boron catalyst were tested, the / -amino alcohol-derived complex 18 and bis-sulfonamide complexes. The former catalyst gave the best results for the reaction of methyl glyoxylate 4b with diene 2a the cycloaddition product 6b was isolated in 69% yield and 94% ee, while the chiral bis-sulfonamide boron complex resulted in only... [Pg.164]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

Chiral salen-cobalt(III) complexes can also catalyze the reaction of glyoxylates with activated dienes to give the cycloaddition product in moderate yield and ee [29]. [Pg.167]

Chiral BOX-zinc(II) complexes can also catalyze the cycloaddition reaction of glyoxylates with, e.g., 2,3-dimethyl-l,3-butadiene and 1,3-cyclohexadiene [36]. The reaction gave for the former diene a higher cycloaddition product/ene product ratio compared with the corresponding chiral copper(II) complexes the ee, however, was slightly reduced. For the reaction of 1,3-cyclohexadiene slightly lower yield and ee were also found. [Pg.170]

Few investigations have included chiral lanthanide complexes as catalysts for cycloaddition reactions of activated aldehydes [42]. The reaction of tert-butyl glyoxylate with Danishefsky s diene gave the expected cycloaddition product in up to 88% yield and 66% ee when a chiral yttrium bis-trifluoromethanesulfonylamide complex was used as the catalyst. [Pg.173]

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

The absolute configuration of the cycloaddition product obtained by the reaction of ketones with activated dienes catalyzed by (S)-t-Bu-BOX-Cu(II) (S)-21b points also to an intermediate in which the geometry around the central copper atom is square-planar similar to 26 above, and that the diene approaches the carbonyl functionality in an endo fashion. [Pg.175]

The chiral BOX-metal(II) complexes can also catalyze cycloaddition reactions of other ketonic substrates [45]. The reaction of ethyl ketomalonate 37 with 1,3-conju-gated dienes, e.g. 1,3-cyclohexadiene 5c can occur with chiral BOX-copper(II) and zinc(II) complexes, Ph-BOX-Cu(OTf)2 (l )-21a, and Ph-BOX-Zn(OTf)2 (l )-39, as the catalysts (Scheme 4.29). The reaction proceeds with good yield and ee using the latter complex as the catalyst. Compared to the copper(II)-derived catalyst, which affects a much faster reaction, the use of the zinc(II)-derived catalyst is more convenient because the reaction gives 94% yield and 94% ee of the cycloaddition product 38. The cycloaddition product 38 can be transformed into the optically active CO2-... [Pg.175]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]


See other pages where Cycloadditions 6+2—1 product is mentioned: [Pg.482]    [Pg.182]    [Pg.17]    [Pg.213]    [Pg.220]    [Pg.78]    [Pg.154]    [Pg.157]    [Pg.163]    [Pg.164]    [Pg.167]    [Pg.168]    [Pg.169]    [Pg.170]    [Pg.171]    [Pg.173]    [Pg.174]    [Pg.175]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Cycloaddition products

© 2024 chempedia.info