Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination products

Reduce or eliminate production of the effluent at the source by waste minimization. [Pg.273]

In the reaction of Q,/3-unsaturated ketones and esters, sometimes simple Michael-type addition (insertion and hydrogenolysis, or hydroarylation, and hydroalkenylation) of alkenes is observed[53,54]. For example, a simple addition product 56 to methyl vinyl ketone was obtained by the reaction of the heteroaromatic iodide 55[S5]. The corresponding bromide affords the usual insertion-elimination product. Saturated ketones are obtained cleanly by hydroarylation of o,/3l-unsaturated ketones with aryl halides in the presence of sodium formate, which hydrogenolyses the R—Pd—I intermediate to R— Pd—H[56]. Intramolecular hydroarylation is a useful reaction. The diiodide 57 reacts smoothly with sodium formate to give a model compound for the afla-toxin 58. (see Section 1.1.6)[57]. Use of triethylammonium formate and BU4NCI gives better results. [Pg.136]

Indoles with carbocyclic halogen or triflate substituents are potential starting materials for vinylation, arylation and acylation via palladium-catalysed pro-cesses[l]. Indolylstannanes. indolylzinc halides and indolylboronic acids are also potential reactants. The principal type of substitution which is excluded from such coupling reactions is alkylation, since saturated alkyl groups tend to give elimination products in Pd-catalysed processes. [Pg.141]

The acidity of acetylene and terminal alkynes permits them to be converted to their conjugate bases on treatment with sodium amide These anions are good nucleophiles and react with methyl and primary alkyl halides to form carbon-carbon bonds Secondary and tertiary alkyl halides cannot be used because they yield only elimination products under these conditions... [Pg.383]

In 1976 the United States banned the use of CFCs as aerosol propellants. No further steps were taken until 1987 when the United States and some 50 other countries adopted the Montreal Protocol, specifing a 50% reduction of fully halogenated CFCs by 1999. In 1990, an agreement was reached among 93 nations to accelerate the discontinuation of CFCs and completely eliminate production by the year 2000. The 1990 Clean Air Act Amendments contain a phaseout schedule for CFCs, halons, carbon tetrachloride, and methylchloroform. Such steps should stop the iacrease of CFCs ia the atmosphere but, because of the long lifetimes, CFCs will remain ia the atmosphere for centuries. [Pg.381]

Polymers of high VDC content are reactive toward strong bases to yield elimination products and toward nucleophiles to yield substitution products. Agents capable of functioning as both a base and a nucleophile react with these polymers to generate a mixture of products (119,133,134). [Pg.438]

Another feature of systems that are subject to B-strain is their reluctance to form strained substitution products. The cationic intermediates usually escape to elimination products in preference to capture by a nucleophile. Rearrangements are also common. 2-Methyl-2-adamantyl p-nitrobenzoate gives 82% methyleneadamantane by elimination and 18% 2-methyl-2-adamantanol by substitution in aqueous acetone. Elimination accounts for 95% of the product from 2-neopentyl-2-adaman l p-nitrobenzoate. The major product (83%) from 2-r-butyl-2-adamantyl p-nitrobenzoate is the rearranged alkene 5. [Pg.300]

In contrast to the behavior of homoallylic alcohol (70a) when treated with methanesulfonyl chloride is pyridine, heating A -19-methanesulfonate (68b) in pyridine gives the 5)5,19-cyclo-6-ene (72). Vinylcyclopropane (72) is inert to the conditions used for converting vinylcyclopropane (73) to the A ° -B-homo-7)5-ol (70a). The latter results are only consistent with the existence of two discrete isomeric carbonium ion intermediates which give rise to isomeric elimination products. °... [Pg.381]

In contrast to the nature of TBAF, tetrabutylammoniuin bifluoride converts benzyl bromide to its fluoride in 100% yield and 4-chloronitrobenzene to 4 fluoronitrobenzene in 70% yield 1-Bromodecane is transformed by tetrabutyl-atnmonium bifluoride to 1-fluorodecanein 88% yield, and Tchlorododecane forms 1-fluorododecane m 83% yield In neither case are significant amounts of the elimination products formed [25]... [Pg.179]

The nucleophilic reaction of bromotrifluoroethene with alkoxides yields not only the expected addition and addition-elimination products but also a product from a bromophilic reaction of the carbanion intermediate [6] (equation 3) Similar are the reactions of sodium phenoxide with perfluorovinyl ethers in the presence of hexachloroethane or selected vicinal dibromoperfluoroalkanes The intermediate carbanion is trapped in high yield by these sources of Cl or Br, which suggests a... [Pg.729]

Regardless of the alkyl halide, raising the temperature increases both the rate of substitution and the rate of elimination. The rate of elimination, however, usually increases faster than substitution, so that at higher temperatures the proportion of elimination products increases at the expense of substitution products. [Pg.350]

Mesylates and tosylates may be used as variants of the 0-sulfate ester. For instance, 55% of aziridine 7 was obtained from base-mediated cyclization of amino mesylate 6. In comparison, the classic Wenker protocol only gave 3% of 7. In another instance, A-tosyl amino alcohol 8 was tosylated to give 9, which was transformed to aziridine 10 in 64% yield, along with 29% of the P-elimination product due to the presence of the ester moiety. Likewise, aziridine 12 was assembled from tosylate 11 in two steps and 60% yield. ... [Pg.64]

Boron trifluoride etherate, is also a good catalyst for this hydride transfer to chalcone. Unlike triphenylmethyl perchlorate, however, chalcone is able to enter Michael additions with the 1,5-diketone followed by eliminations leading to unexpected products, e.g., 3-benzyl-2,4,6-triphenylpyrylium from 2-carbethoxy-l,3,5-tri-phenylpentane-l,5-dione and chalcone the benzyl group originates from chalcone, the elimination product being ethyl benzoylacetate. ... [Pg.281]

Treatment of the substrate (34) with catalytic (Ph3P)4Pd and dppe provided the desired bicyclo[3.3.0]octanes (35) and the acetate elimination product (36). The choice of ligand is crucial in this case since using only dppe or Ph3P increased the amount of (36). On the other hand addition of BSA (N,0-bis(trimethylsilyl) acetamide) minimized this side product (Scheme 2.12) [24]. [Pg.65]

Perhydroindans (46) and (47) could be obtained in 73% yield from the carbonate (48) with only minor amounts of elimination product. The use of BSA and the triisopropyl phosphite-palladium acetate catalytic system provides further improvement. The low cisitrans selectivity in the formation of the first ring, and rapid subsequent cyclization account for the fact that the ratio of (46) to (47) is only 2 1 (Scheme 2.14). Even the presence of a bulky trialkylsiloxyl substituent adjacent to the vinyl sulfone moiety has only a minor influence on the cisitrans selectivity [24]. [Pg.67]

In the case of the cyclohexane derivative 7 however, that bears an equatorial acetate group, two axial cis-/3-hydrogens are available, and elimination in both directions is possible. The pyrolysis of 7 yields the two elimination products 8 and 6. Formation of product 8 is strongly favored, because the new double bond is in conjugation to the ester carbonyl group. ... [Pg.108]

With substrates, where a /3-hydrogen as well as a /3 -hydrogen is available for elimination, product formation follows the so-called Hofmann rule, which states... [Pg.164]

Various side-reactions may complicate the course of the Nef reaction. Because of the delocalized negative charge, the nitronate anion 2 can react at various positions with an electrophile addition of a proton at the a-carbon reconstitutes the starting nitro alkane. 1. The nitrite anion can act as leaving group, thus leading to elimination products. [Pg.211]

Condensation of piperazine with 2-methoxytropone gives the addition-elimination product 12 [2]. Alkylation of the remaining secondary amino group with bromoketone 13, itself the product from acylation of dimethyl catechol, gives aminoketone 14. Reduction of the carbonyl group with sodium borohydride leads to secondaiy alcohols 15 and 16. Resolution of these two enantiomers was achieved by recrystallization of their tartrate salts to give ciladopa (16) [3],... [Pg.22]

The alkylation reaction is limited to the use of primary alkyl bromides and alkyl iodides because acetylide ions are sufficiently strong bases to cause dehydrohalogenation instead of substitution when they react with secondary and tertiary alkyl halides. For example, reaction of bromocyclohexane with propyne anion yields the elimination product cyclohexene rather than the substitution product 1-propynylcyclohexane. [Pg.273]

El eliminations begin with the same uni molecular dissociation we saw in the Sfsjl reaction, but the dissociation is followed by loss of H+ from the adjacent carbon rather than by substitution. In fact, the El and SN1 reactions normally occur together whenever an alkyl halide is treated in a protic solvent with a non-basic nucleophile. Thus, the best El substrates are also the best SN1 substrates, and mixtures of substitution and elimination products are usually obtained. For example, when 2-chloro-2-methylpropane is warmed to 65 °C in 80% aqueous ethanol, a 64 36 mixture of 2-methyl-2-propanol (Sjql) and 2-methylpropene (El) results. [Pg.392]

How can you explain the fact that ham- -bromo-2-methylcyclohexaneyields the non-Zaitsev elimination product 3-methylcvclohexene on treatment with base ... [Pg.404]

Assume that you are carrying out the base-induced dehydrobromination of 3-bromo-3-methylpentane (Section 11.7) to yield an alkene. How could you use 1R spectroscopy to tell which of two possible elimination products is formed ... [Pg.437]

Lithiation of thioxanthene by butyllithium and condensation with formaldehyde gives thioxanthene-9-methanol. The p-toluenesulfonyl derivative 2, on treatment with refluxing formic acid, rearranges to a dibenzotropylium ion, which gives the elimination product 3 in 44% yield.20... [Pg.86]

Diamino-substituted complexes of type 37 were first obtained by Fischer et al. [12] in two steps via the 1,2-addition-elimination product 34 from di-methylamine and 35 (Scheme 6). The (3-aminoallenylidene)chromium complexes 36, which can be prepared either from 33 [47,48] or directly from 35 [33], can also be transformed to l,3-bis(dialkylamino)-substituted complexes of type 37 (e.g., R2=z Pr) by treatment with dimethylamine in excellent yields [33]. Although the complex 37 is accessible by further reaction of the complex 34 with dimethylamine, and 34 itself stems from the reaction of 35 with dimethylamine, the direct transformation of 33 to 37 could not be achieved [12]. In spite of this, heterocyclic carbene complexes with two nitrogens were obtained by reactions of alkynylcarbene complexes 35 with hydrazine [49] and 1,3-diamines [50]. [Pg.27]

Since a small amount of water is always present in novolac resins, it has also been suggested that some decomposition of HMTA proceeds by hydrolysis, leading to the elimination of formaldehyde and amino-methylol compounds (Fig. 7.15).42 Phenols can react with the formaldehyde elimination product to extend the novolac chain or form methylene-bridged crosslinks. Alternatively, phenol can react with amino-methylol intermediates in combination with formaldehyde to produce ortho-or para-hydroxybenzylamines (i.e., Mannich-type reactions). [Pg.389]

A more recent study focused on the directed evolution of the co-transaminase from Vibrio fiuvialis JS17, specifically with the aim to eliminate product inhibition by aliphatic ketones while maintaining high enantioselectivity. This was achieved by screening 85 000 clones produced by epPCR [72]. [Pg.46]

The reactions were between the alkyl bronude and OEt . The rate for isopropyl bromide was actually greater than that for ethyl bromide, if the temperature differenee is eonsidered. Neopentyl bromide, the next compound in the P-branching series, cannot be compared because it has no p-hydrogen and cannot give an elimination product without rearrangement. [Pg.1320]

A 30% solution of hydrogen peroxide in water was purchased from Mallinckrodt Chemical Works. The reaction requires 2 molar equivalents of hydrogen peroxide, the first to oxidize the selenide to the selenoxide and the second to oxidize the elimination product, benzeneselenenic acid, to benzeneseleninic acid. The submitters recommend that the hydrogen peroxide solution be taken from a recently opened bottle, or titrated to verify its concentration. [Pg.167]


See other pages where Elimination products is mentioned: [Pg.112]    [Pg.8]    [Pg.44]    [Pg.362]    [Pg.93]    [Pg.190]    [Pg.503]    [Pg.566]    [Pg.157]    [Pg.67]    [Pg.293]    [Pg.466]    [Pg.362]    [Pg.174]    [Pg.140]    [Pg.18]    [Pg.173]    [Pg.84]    [Pg.120]    [Pg.26]    [Pg.251]   
See also in sourсe #XX -- [ Pg.419 ]




SEARCH



13-Cyclohexadiene, elimination product

Addition-elimination reactions tandem products

Aldol reaction elimination product

Alkenes—The Products of Elimination Reactions

Cleaner production waste elimination/reduction

Disilene, elimination product

Elimination from Mannich product

Elimination from aldol product

Elimination reactions Hoffmann product

Elimination reactions Zaitsev product

Elimination reactions products

Formation of Regioisomeric Alkenes by 3-Elimination Saytzeff and Hofmann Product(s)

Hoffmann elimination product

Hydrobromic acid elimination reaction product

Hydrogen, elimination production

Natural products, elimination, enzyme

Predictions major elimination product

Product development control, elimination

Product ratios for some E2 eliminations

Product-determining step for El elimination

Propene elimination reaction product

Substitution vs. Elimination Predicting the Products

Tandem addition-elimination products

© 2024 chempedia.info