Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric backbone

In some cases, dye-forming moieties attached to a polymeric backbone, called a polymeric coupler, can replace the monomeric coupler in coupler solvent (51). In other reports, very small particles of coupler solubilized by surfactant micelles can be formed through a catastrophic precipitation process (58). Both approaches can eliminate the need for mechanical manipulation of the coupler phase. [Pg.476]

The earliest study describing vulcanised polymers of esters of acryUc acid was carried out in Germany by Rohm (2) before World War I. The first commercial acryUc elastomers were produced in the United States in the 1940s (3—5). They were homopolymers and copolymers of ethyl acrylate and other alkyl acrylates, with a preference for poly(ethyl acrylate) [9003-32-17, due to its superior balance of properties. The main drawback of these products was the vulcanisation. The fully saturated chemical stmcture of the polymeric backbone in fact is inactive toward the classical accelerators and curing systems. As a consequence they requited the use of aggressive and not versatile compounds such as strong bases, eg, sodium metasiUcate pentahydrate. To overcome this limitation, monomers containing a reactive moiety were incorporated in the polymer backbone by copolymerisation with the usual alkyl acrylates. [Pg.474]

There is a large range of resins available for SPOS. These resins are derivatised polymer supports with a range of linkers. The roles of linkers are (i) to provide point(s) of attachment for the tethered molecule, akin to a solid supported protecting group(s), (ii) to provide distance from the polymeric backbone in order to minimise interactions with the backbone, (iii) to enable cleavage of product molecules under conditions compatible with the stability of the molecules and the reaction conditions employed for chemical transformations. Hence in order to... [Pg.74]

B. Initiation of sites on a polymeric backbone where a monomer can be grafted. [Pg.417]

Graft copolymer—A graft copolymer consists of a polymeric backbone with covalently linked lateral... [Pg.481]

In the presence of radical initiators such as benzoyl peroxide (BPO), azobisisobutyronitrile (AIBN), persulfates (S208 ), etc., grafting of vinyl monomers onto polymeric backbones involves generation of free radical sites by hydrogen abstraction and chain transfer processes as described below ... [Pg.483]

Misra et al. have utilized the ceric-amine redox system for grafting MM A onto wool [60] and gelatin [61], The graft yield was explained in terms of basicity, nu-cleophilicity, and steric requirements of amines. A complex of ceric ion and amine (AH) decomposes to generate free radical species, which produce additional active sites onto the polymeric backbone where grafting can occur. [Pg.487]

Metal chelates are known to decompose upon heating to generate free radicals, which can abstract hydrogen atoms from the polymeric backbone producing an active site where grafting can take place. [Pg.488]

If the grafting is carried out in air, the active sites on the polymeric backbone is attacked by atmospheric oxygen leading to the formation of macroperoxy radical, which might abstract the hydrogen atom from the backbone polymer by an inter- or intramolecular process to give hydroperoxide groups as shown. [Pg.490]

By means of a ring-opening polymerization of the condensation type Vlasov et al. [50] synthesized polypeptide based MAIs with azo groups in the polymeric backbone. The method is based on the reaction of a hydracide derivative of AIBN and a N-carboxy anhydride. Containing one central azo group in the polymer main chain, the polymeric azo initiator was used for initiating block copolymerizations of styrene and various methacrylamides. [Pg.740]

A special case of the internal stabilization of a cationic chain end is the intramolecular solvation of the cationic centre. This can proceed with the assistance of suitable substituents at the polymeric backbone which possess donor ability (for instance methoxy groups 109)). This stabilization can lead to an increase in molecular weight and to a decrease in non-uniformity of the products. The two effects named above were obtained during the transition from vinyl ethers U0) to the cis-l,2-dimethoxy ethylene (DME)1U). An intramolecular stabilization is discussed for the case of vinyl ether polymerization by assuming a six-membered cyclic oxonium ion 2) as well as for the case of cationic polymerization of oxygen heterocycles112). Contrary to normal vinyl ethers, DME can form 5- and 7-membe red cyclic intermediates beside 6-membered ringsIl2). [Pg.205]

N-Methyl-2-pyrrolidinone 2 KHSO5 KHSO4 K2SO4 Polymeric backbone Pyridinium chlorochromate Pyridinium dichromate Polyethylene glycol... [Pg.2101]

In the same scheme, moreover, it is evident that, besides phosphazene homopolymers, the substitution of the chlorines with two (or more) different substituents leads to the preparation of substituent phosphazene copolymers [263] containing different homosubstituted and heterosubstituted monomeric units. Moreover, the cationic polymerization of phosphoranimines [215-217] produces polymers with hving reactive ends (vide supra) from which the preparation of chain phosphazene copolymers (block copolymers) [220,223,225, 229,232-235,239, 240] formed by different polymeric backbones linked together in a unique macromolecule could be obtained. [Pg.179]

Dendrimers, a relatively new class of macromolecules, differ from traditional Hnear, cross-Hnked, and branched polymers. The conventional way of introducing an active moiety into polymers is to Hnk it chemically into the polymeric backbone or a polymer branch. This synthetic approach results in a topologically complex material. Therefore, a significant effort has to be devoted to improve the structural complexities and functions of the polymers. [Pg.206]

A polynucleoside with an unnatural polymeric backbone was synthesized by SBP-catalyzed oxidative polymerization of thymidine 5 -p-hydroxyphenylacetate. Chemoenzymafic synthesis of a new class of poly(amino acid), poly(tyrosine) containing no peptide bonds, was achieved by the peroxidase-catalyzed oxidative polymerization of tyrosine ethyl esters, followed by alkaline hydrolysis. Amphiphile higher alkyl ester derivatives were also polymerized in... [Pg.236]

Figure 1. Chromophore (A) and polymeric backbone structures (B) used for synthesis of the polymeric dye... Figure 1. Chromophore (A) and polymeric backbone structures (B) used for synthesis of the polymeric dye...
Most circuit boards are FR-4 boards that meet standards for fire safety by the use of brominated epoxy resins in which the reactive flame-retardant tetrabromobisphenol A (TBBPA) forms part of the polymeric backbone of the resin. Alternative flame-retardant materials are used in only 3-5 per cent of the FR-4 boards, but additional alternative flame-retardant materials are also imder development. Little information exists concerning the potential environmental and human health impacts of the materials which are being developed as alternatives to those used today that are based on brominated epoxy resins. [Pg.301]

This material was first synthesized in the middle 1960s by E.I. Du Pont de Nemours and Co., and was soon recognized as an outstanding ion conductor for laboratory as well as for industrial electrochemistry. The perfluorinated polymeric backbone is responsible for the good chemical and thermal stability of the polymer. Nation membrane swollen with an electrolyte solution shows high cation conductivity, whereas the transport of anions is almost entirely suppressed. This so-called permselectivity (cf. Section 6.2.1) is a characteristic advantage of Nation in comparison with classical ion-exchange polymers, in which the selective ion transport is usually not so pronounced. [Pg.143]

The synthesis of block polymers of diacetylene-silarylene and diacetylene-carboranylenesiloxane polymers (99a-e) (Fig. 61) by the polycondensation reaction of 1,4-dilithiobutadiyne with l,4-bis(dimethylchlorosilyl) benzene and/or l,7-bis(tetramethylchlorodisiloxane)-m-carborane have been reported by Sundar and Keller.129 These polymers are a hybrid between the carboranylenesiloxane and silarylene-siloxane polymers and have high char yields (up to 85%) at 1000°C in N2 and in air, reflecting the thermal stabilizing effects of the carborane and aromatic units in the polymeric backbone. [Pg.62]

Although many questions are still open, peptide nucleic acids are easier to synthesize via simple reaction routes than is natural RNA. The PNAs have another important advantage they are achiral and uncharged, i.e., they contain no chiral centres in the polymeric backbone (see Sect. 9.4). Unfortunately, however, they do not fulfil all the necessary conditions for molecular information storage and transfer. Thus, the search for other possible candidates for a pre-RNA world continues. [Pg.170]

Several examples of ion-selective electrodes with ionophores covalently attached to a self-plasticized polymeric matrix have been reported in the literature. For instance, a Ca-selective electrode with the ionophore attached to a methylmethacrylate-co-decyl methacrylate backbone was developed recently [91]. Ion exchangers such as the dodecacarborane anion have been anchored to the polymeric backbone, with grafted dodecarborane showing greatly improved retention in the polymeric phase [88],... [Pg.127]

Immobilized cryptates. Like the crowns, cryptates have been immobilized on polymeric backbones. A typical system is given by (221) (Cinquini, Colonna, Molinari, Montanari Tundo, 1976). In this case, the polymeric matrix is polystyrene cross-linked with p-divinyl benzene and the cage is connected to this matrix via a long-chain aliphatic spacer group. This reagent is quite effective as a (triphase) transfer catalyst. [Pg.133]


See other pages where Polymeric backbone is mentioned: [Pg.119]    [Pg.322]    [Pg.474]    [Pg.228]    [Pg.2030]    [Pg.357]    [Pg.483]    [Pg.483]    [Pg.485]    [Pg.486]    [Pg.487]    [Pg.494]    [Pg.506]    [Pg.124]    [Pg.280]    [Pg.11]    [Pg.67]    [Pg.182]    [Pg.318]    [Pg.53]    [Pg.139]    [Pg.1]    [Pg.337]    [Pg.338]    [Pg.324]    [Pg.123]    [Pg.124]    [Pg.127]    [Pg.112]   
See also in sourсe #XX -- [ Pg.15 , Pg.72 ]




SEARCH



© 2024 chempedia.info