Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersants unsaturated acids

A nonpolluting dispersing agent for drilling fluids [217-219] has been described. The agent is based on polymers or copolymers of unsaturated acids, such as acrylic acid or methacrylic acid, with suitable counter ions. [Pg.315]

Binders in coatings include polyvinyl acetate and copolymers, polyvinyl butyral, polyesters, acrylic polymers, epoxies and polyurethanes (see Ethylene-vinyl acetate copolymers. Acrylic adhesives, Epoxide adhesives and Polyurethane), polyvinyl chloride, polyvinylidene fluoride and aUcyds (oxygen-convertible media containing polyol esters of long-chain unsaturated acids). All these potential film-formers can adhere through dispersion forces, (which are probably weak). Many binders, however, also contain... [Pg.308]

Sulfur in oxidation state IV can be used to produce a variety of anionic snUbnates, as depicted in Scheme 1.5. Sodium bisulfite can be used to prepare sulfonates of a,b-unsaturated acids and esters, such as those prepared from maleic anhydride. The mechanism involves Michael addition to the activated double bond by the more nucleophilic sulfur atom, and is conducted in an aqueous two-phase system where, for example, a maleate half acid ester or diester is dispersed and heated under narrowly controlled pH conditions to minimize ester hydrolysis and avoid competitive hydroxide addition to the double bond. The resulting classes of surfactants include sulfosuccinates (which are in fact carboxylate sulfonate disalt surfactants) prepared from the maleic half acid esters of fatty alcohols or alcohol ethoxylates. Diesters of maleic are sulfonated by the same type of process to produce surfactants such as the ubiquitous dioctyl sulfosuccinate (DOSS) from the diester of 2-ethylhexyl alcohol and maleic anhydride. [Pg.19]

These are an interesting class of surface modifiers, now finding significant commercial uses and capable of being used as dispersants and coupling agents with a wide range of filler types. With these products, the unsaturated acid, or pre-cursor such as anhydride, is pre-reacted onto a suitable polymer backbone. Two main classes of product are available, one with a saturated hydrocarbon backbone, the other with an unsaturated one. [Pg.175]

Unsaturated acids, such as those based on polybutadiene, can be used as effective dispersants in situations where the double bonds are not able to react chemically with the polymer matrix. [Pg.506]

Two important widely used sulfonic acids are known as TwitcheU s reagents, or as in Russia, the Petrov catalysts. These reagents are based on benzene or naphthalene ( ) and (12), [3055-92-3] and [82415-39-2] respectively. The materials are typically made by the coupling of an unsaturated fatty acid with benzene or naphthalene in the presence of concentrated sulfuric acid (128). These sulfonic acids have been used extensively in the hydrolysis of fats and oils, such as beef tallow (129), coconut oil (130,131), fatty methyl esters (132), and various other fats and oils (133—135). TwitcheU reagents have also found use as acidic esterification catalysts (136) and dispersing agents (137). [Pg.103]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

The surface energy of fibers is closely related to the hydrophilicity of the fiber [38]. Some investigations are concerned with methods to decrease hydrophilicity. The modification, of wood cellulose fibers with stearic acid [43] hydrophobizes those fibers and improves their dispersion in polypropylene. As can be observed in jute-reinforced unsaturated polyester resin composites, treatment with polyvinylacetate increases the mechanical properties [24] and moisture repellency. [Pg.796]

By depolymerizing PET waste with a polyol and subsequently condensing the oligomeric product with a polycarboxylic acid or anhydride, polyester resins are produced which have wide industrial applications. Depending on the polyol and polycarboxylic acid or anhydride used, saturated resins, alkyd resins, or unsaturated resins are obtained. PET wastes have been used for the production of alkyd resins in water thinnable paints. The materials obtained from the reaction of PET with a mixture of fatty acids high in linoleic acid content and trimethylolethane have been used in the preparation of water-dispersible coatings. Products of the depolymerization of PET with trimethylolpropane and pentaerythritol are used in the manufacture of high-solids paints. In the first step, PET is depolymerized with trimethylopropane and pentaerythritol at temperatures of 230-240°C. The final paint compositions contain 30-50% of PET depolymerization products.12... [Pg.530]

A microemulsion (p.E) is a thermodynamically stable, transparent (in the visible) droplet type dispersion of water (W) and oil (O a saturated or unsaturated hydrocarbon) stabilized by a surfactant (S) and a cosurfactant (CoS a short amphiphile compound such as an alcohol or an amine) [67]. Sometimes the oil is a water-insoluble organic compound which is also a reactant and the water may contain mineral acids or salts. Because of the small dispersion size, a large amount of surfactant is required to stabilize microemulsions. The droplets are very small (about 100-1000 A [68]), about 100 times smaller than those of a typical emulsion. The existence of giant microemulsions (dispersion size about 6000 A) has been demonstrated [58]. [Pg.281]

A corrosion inhibitor with excellent film-forming and film-persistency characteristics is produced by first reacting Cig unsaturated fatty acids with maleic anhydride or fumaiic acid to produce the fatty acid Diels-Alder adduct or the fatty acid-ene reaction product [31]. This reaction product is further reacted in a condensation or hydrolyzation reaction with a polyalcohol to form an acid-anhydride ester corrosion inhibitor. The ester may be reacted with amines, metal hydroxides, metal oxides, ammonia, and combinations thereof to neutralize the ester. Surfactants may be added to tailor the inhibitor formulation to meet the specific needs of the user, that is, the corrosion inhibitor may be formulated to produce an oil-soluble, highly water-dispersible corrosion inhibitor or an oil-dispersible, water-soluble corrosion inhibitor. Suitable carrier solvents may be used as needed to disperse the corrosion inhibitor formulation. [Pg.91]

A dispersant that can be used in drilling fluids, spacer fluids, cement slurries, completion fluids, and mixtures of drilling fluids and cement slurries controls the rheologic properties of and enhances the filtrate control in these fluids. The dispersant consists of polymers derived from monomeric residues, including low-molecular-weight olefins that may be sulfonated or phosphonated, unsaturated dicarboxylic acids, ethylenically unsaturated anhydrides, unsaturated aliphatic monocarboxylic acids, vinyl alcohols and diols, and sulfonated or phosphonated styrene. The sulfonic acid, phosphonic acid, and carboxylic acid groups on the polymers may be present in neutralized form as alkali metal or ammonium salts [192,193]. [Pg.311]

Ir catalysts supported on binary oxides of Ti/Si and Nb/Si were prepared and essayed for the hydrogenation of a,P-unsaturated aldehydes reactions. The results of characterization revealed that monolayers of Ti/Si and Nb/Si allow a high metal distribution with a small size crystallite of Ir. The activity test indicates that the catalytic activity of these solids is dependent on the dispersion obtained and acidity of the solids. For molecules with a ring plane such as furfural and ciimamaldehyde, the adsorption mode can iirfluence the obtained products. SMSI effect (evidenced for H2 chemisorption) favors the formation of unsaturated alcohol. [Pg.124]

Unsaturated polyesters with neutralized terminal carboxyl acid groups (EUP) are efficient emulsifiers which, at a sufficient concentration, may form aqueous microemulsions. Micro emulsions are liquid dispersions of translucent (opalescent or transparent) appearance. Their disperse phase contains particles of diameters between 20 and 80 nm which closely approaches the diameters (5-15 nm) of micelles [114]. [Pg.160]

Uses. About 60% of the MA produced is used to make unsaturated polyester and aikyd resins, which are formed by reaction of MA with glycols. Polyester resins are used in the fabrication of glass fiber reinforced parts. Applications include boat hulls, automobile body parts, patio furniture, shower stalls, and pipe. Aikyd resins are mostly used in coatings (paint, varnish, lacquers, and enamels). MA also is widely used as a chemical intermediate in the manufacture of plasticizers and dibasic acids (fumaric, maleic, and succinic). About 15% of MA production goes into the manufacture of viscosity index improvers and dispersants used as additives in lube oils. Several agricultural chemicals are based on maleic anhydride, the best known being Malathion. [Pg.298]

Studies are currently underway in Moscow on the suitability of using sodium caseinate nanoparticles as carriers for phosphatidylcholine (lecithin) containing > 80% unsaturated fatty acids (oleic, linoleic, linolenic). In particular, it has been established that phosphatidylcholine oxidation can be reduced, or effectively eliminated altogether, in dispersed systems containing complexes with the protein (see Figure 2.4). [Pg.67]

Hand-shaken dispersions of phospholipids thus may be a more reasonable choice for comparison with membranes, and except in rare cases of highly unsaturated systems the high resolution NMR spectra of such dispersions do not exhibit high resolution proton absorption. Hence, for most membranes, NMR can indicate immobilization of fatty acid chains but not whether chains are immobilized by binding onto proteins or by tight packing into bilayers. Broad line NMR may be useful, especially when a phase transition is present. [Pg.300]

The acid-base properties of polymers, fillers and silane additives, as described by Fowkes [14] can be used to predict the effect of silanes on the dispersion of fillers in polymer, and viscosity of the mix. In general, opposites attract (give good dispersion) while like materials repel (poor dispersion) [15]. The effect of cationic silane (Z-6032) on the dispersion of silica (acidic filler) in this particular unsaturated polyester resin (acidic polymer) is shown in Table 6. Addition of Z-6032 in increments to a silica-filled polyester resin lowered the viscosity of the mixture to a minimum at about 0.4% silane based on the filler. [Pg.12]

The dispersions were obtained by emulsification via ultrasonication of a toluene solution of the unsaturated homopolymer in an aqueous surfactant solution. This was followed by exhaustive hydrogenation with Wilkinson s catalyst at 60°C and 80 bar H2 to produce a dispersion with an average particle size of 35 nm (dynamic light scattering and transmission electron microscopy analyses). The same a,co-diene was used as comonomer in the ADMET polymerization of a phosphorus-based monomer, also containing two 10-undecenoic acid moieties... [Pg.29]


See other pages where Dispersants unsaturated acids is mentioned: [Pg.46]    [Pg.49]    [Pg.248]    [Pg.549]    [Pg.355]    [Pg.369]    [Pg.1277]    [Pg.124]    [Pg.27]    [Pg.271]    [Pg.238]    [Pg.36]    [Pg.159]    [Pg.548]    [Pg.304]    [Pg.173]    [Pg.1336]    [Pg.17]    [Pg.282]    [Pg.91]    [Pg.41]    [Pg.84]    [Pg.83]    [Pg.298]    [Pg.21]    [Pg.29]    [Pg.686]   
See also in sourсe #XX -- [ Pg.506 ]




SEARCH



Acids, unsaturated

Dispersants, acidity

© 2024 chempedia.info