Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tight packing

One can see from the formulas (1) and (2) that PT sensitivity strongly depends on the thickness of a developer s layer. But during liquid s penetration into developer s layer the powder particles are sinking and more tightly packing each other. It results in decrease of layer thickness h Physical meaning of the influence of this process upon defect s detection is obvious as follows. [Pg.614]

Finally, in 1985, the results of an extensive investigation in which adsorjDtion took place onto an aluminium oxide layer fonned on a film of aluminium deposited in vacuo onto a silicon wafer was published by Allara and Nuzzo 1127, 1281. Various carboxylic acids were dissolved in high-purity hexadecane and allowed to adsorb from this solution onto the prepared aluminium oxide surface. It was found that for chains with more than 12 carbon atoms, chains are nearly in a vertical orientation and are tightly packed. For shorter chains, however, no stable monolayers were found. The kinetic processes involved in layer fonnation can take up to several days. [Pg.2623]

The ratio 0/0 is thus a measure of the enhancement of the energy of adsorption in a micropore as compared with that on an open surface. In curve (i) of Fig. 4.9 this ratio is plotted as a function of d/r and, as is seen, the enhancement is still appreciable when d = l-Sr, but has almost disappeared when d = 2r , i.e. when the slit is only two molecular diameters wide. Even when d/r = 1, which corresponds to a single molecule tightly packed into the width of the slit, the enhancement is only 1-6-fold. The effect... [Pg.208]

As the substrate temperature increases, the surface mobUity increases and the stmctural morphology first transforms to that of Zone T, ie, tightly packed fibrous grains having weak grain boundaries, and then to a full density columnar morphology corresponding to Zone 2 (see Fig. 7). [Pg.49]

It is difficult for dye solutions in water to penetrate synthetic fibers such as polyester, cellulose triacetate, polyamides, and polyacryUcs which are somewhat hydrophobic. The rate of water imbibition differs with each fiber as shown in Table 1 as compared to viscose (see Fibers, regenerated CELLULOSics), which imbibes water at the rate of 100% (1). The low imbibition rate is attributed to the high T obtained when the polymeric fibers are drawn. During this drawing operation the polymer chains become highly oriented and tightly packed, forming a stmcture practically free of voids. [Pg.265]

Another method for removing O2 is to pass the nitrogen through a long tightly packed column of Cu turnings, the surface of which is constantly renewed by scrubbing it with ammonia (sg 0.880) soln. The gas is then... [Pg.445]

Variations on the a helix in which the chain is either more loosely or more tightly coiled, with hydrogen bonds to residues n + 5 or n + 3 instead of n + 4 are called the n helix and 3io helix, respectively. The 3io helix has 3 residues per turn and contains 10 atoms between the hydrogen bond donor and acceptor, hence its name. Both the n helix and the 3to helix occur rarely and usually only at the ends of a helices or as single-turn helices. They are not energetically favorable, since the backbone atoms are too tightly packed in the 3io helix and so loosely packed in the n helix that there is a hole through the middle. Only in the a helix are the backbone atoms properly packed to provide a stable structure. [Pg.15]

Figure 4.3 In most a/p-barrel structures the eight p strands of the barrel enclose a tightly packed hydrophobic core formed entirely by side chains from the p strands. The core is arranged in three layers, with each layer containing four side chains from alternate p strands. The schematic diagram shows this packing arrangement in the a/p barrel of the enzyme glycolate oxidase, the structure of which was determined by Carl Branden and colleagues in Uppsala, Sweden. Figure 4.3 In most a/p-barrel structures the eight p strands of the barrel enclose a tightly packed hydrophobic core formed entirely by side chains from the p strands. The core is arranged in three layers, with each layer containing four side chains from alternate p strands. The schematic diagram shows this packing arrangement in the a/p barrel of the enzyme glycolate oxidase, the structure of which was determined by Carl Branden and colleagues in Uppsala, Sweden.
There is one exception to the rule that requires bulky hydrophobic residues to fill the interior of eight-stranded a/p barrels in order to form a tightly packed hydrophobic core. The coenzyme Biz-dependent enzyme methylmalonyl-coenzyme A mutase, the x-ray structure of which was determined by Phil Evans and colleagues at the MRC Laboratory of Molecular... [Pg.50]

Alpha helices D and E from the L and M subunits (Figure 12.14) form the core of the membrane-spanning part of the complex. These four helices are tightly packed against each other in a way quite similar to the four-helix bundle motif in water-soluble proteins. Each of these four helices provides a histidine side chain as ligand to the Ee atom, which is located between the helices close to the cytoplasm. The role of the Ee atom is probably to... [Pg.236]

Over 20 different methods have been proposed for predictions of secondary stmcture they can be categorized in two broad classes. The empirical statistical methods use parameters obtained from analyses of known sequences and tertiary stmctures. All such methods are based on the assumption that the local sequence in a short region of the polypeptide chain determines local stmcture as we have seen, this is not a universally valid assumption. The second group of methods is based on stereochemical criteria, such as compactness of form with a tightly packed hydrophobic core and a polar surface. Three frequently used methods are the empirical approaches of P.Y. Chou and G.D. Fasman and of J. Gamier, D.J. Osguthorpe and B. Robson (the GOR method), and third, the stereochemical method of V.l. him. [Pg.351]

High chemical resistance - the tightly packed structure prevents chemical attack deep within the material. [Pg.5]

Both attractive forces and repulsive forces are included in van der Waals interactions. The attractive forces are due primarily to instantaneous dipole-induced dipole interactions that arise because of fluctuations in the electron charge distributions of adjacent nonbonded atoms. Individual van der Waals interactions are weak ones (with stabilization energies of 4.0 to 1.2 kj/mol), but many such interactions occur in a typical protein, and, by sheer force of numbers, they can represent a significant contribution to the stability of a protein. Peter Privalov and George Makhatadze have shown that, for pancreatic ribonuclease A, hen egg white lysozyme, horse heart cytochrome c, and sperm whale myoglobin, van der Waals interactions between tightly packed groups in the interior of the protein are a major contribution to protein stability. [Pg.160]

Badly worn machinery, tight packing glands, badly adjusted drive belts, etc., leading to wastage of drive power... [Pg.353]


See other pages where Tight packing is mentioned: [Pg.688]    [Pg.690]    [Pg.2624]    [Pg.2913]    [Pg.639]    [Pg.3]    [Pg.472]    [Pg.159]    [Pg.58]    [Pg.55]    [Pg.429]    [Pg.557]    [Pg.576]    [Pg.399]    [Pg.399]    [Pg.1442]    [Pg.1958]    [Pg.2406]    [Pg.370]    [Pg.236]    [Pg.445]    [Pg.50]    [Pg.90]    [Pg.97]    [Pg.99]    [Pg.230]    [Pg.248]    [Pg.841]    [Pg.388]    [Pg.44]    [Pg.36]    [Pg.268]    [Pg.310]    [Pg.39]    [Pg.25]    [Pg.16]    [Pg.491]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Surfactant Concentration Tight Monolayer Packing

© 2024 chempedia.info