Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butylate properties

Of the remaining materials in Table IV, only Viton, neoprene rubber latex,poly(vinyl alcohol), butyl rubber, and butyl-coated nylon exhibited at least a 20-min breakthrough time forl,2 dichloro-ethane permeation to occur. The nitrile rubber latex, cement dipped nitrile rubber, polyethylene (medium density), and surgical rubber latex were all penetrated by 1,2-dichloroethane in less than 3 min and would be of little use in situations requiring the garment to be in constant contact with 1,2-dichloroethane. From the above, butyl rubber or Viton appear to be the best materials to protect the worker against 1,2-dichloroethane, but because of apparent lot-to-lot variations(20) in butyl properties, Viton appears to be the best suited material of these studies to protect the worker from this chemical. [Pg.252]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

The properties of tert butyl cation can be understood by focusing on its structure which IS shown m Figure 4 9 With only six valence electrons which are distributed among three coplanar ct bonds the positively charged carbon is sp hybridized The unhybridized 2p orbital that remains on the positively charged carbon contains no elec Irons Its axis is perpendicular to the plane of the bonds connecting that carbon to the three methyl groups... [Pg.156]

Vinyl Ethers. The principal commercial vinyl ethers are methyl vinyl ether (methoxyethene, C H O) [107-25-5], ethyl vinyl ether (ethoxyethene, C HgO) [104-92-2], and butyl vinyl ether (1-ethenyloxybutane, C H 20) [111-34-2]. (See Table 8 for physical properties.) Others such as the isopropyl, isobutyl, hydroxybutyl, decyl, hexadecyl, and octadecyl ethers, as well as the divinyl ethers of butanediol and of triethylene glycol, have been offered as development chemicals (see Ethers). [Pg.114]

Table 4 lists a variety of aLkoxypropionaldehydes and certain of thek properties (67). Alcohols up to -butyl have been added to acroleki ki this fashion. Methyl, ethyl, and aHyl alcohols react with ease, while the addition of hexyl or octyl alcohol proceeds ki low yields. Although the aLkoxypropionaldehydes have found only limited kidustrial utiUty, it is anticipated that they will find use as replacements for more toxic solvents. Furthermore, the aLkoxypropionaldehydes may readily be reduced to the corresponding alkoxypropanols, which may also have deskable properties as solvents. [Pg.125]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

Property Methyl Ethyl -Butyl Isobutyl 2-Ethylhexyl... [Pg.148]

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

The number of branches in HDPE resins is low, at most 5 to 10 branches per 1000 carbon atoms in the chain. Even ethylene homopolymers produced with some transition-metal based catalysts are slightly branched they contain 0.5—3 branches per 1000 carbon atoms. Most of these branches are short, methyl, ethyl, and -butyl (6—8), and their presence is often related to traces of a-olefins in ethylene. The branching degree is one of the important stmctural features of HDPE. Along with molecular weight, it influences most physical and mechanical properties of HDPE resins. [Pg.379]

ROOC—COOH, are not. The dialkyl esters are characterized by good solvent properties and serve as starting materials in the synthesis of many organic compounds, such as pharmaceuticals, agrochemicals, and fine chemicals (qv). Among the diesters, dimethyl, diethyl, and di- -butyl oxalates are industrially important. Their physical properties are given in Table 7. [Pg.463]

Physical Properties. The stmctures and the boiling and melting points of several diaLkyl peroxides are Hsted in Table 2 a comprehensive Hst is given in the Hterature (66). The melting point of 4,4 -dioxybis[2,4,6-tris(/ i -butyl)-2,5-cyclohexadien-l-one] [1975-14-0] is 148—149°C. [Pg.106]

Derivatives. In general, the esters of terephthaHc acid derived from saturated alcohols undergo the same reactions as dimethyl terephthalate. Some physical properties of six of these esters are Hsted in Table 23. The di- -butyl and di-2-ethyIhexyl esters find use as plasticizers (qv). Terephthaloyl chloride, which is prepared by reaction of terephthaHc acid and thionyl chloride, is used to prepare derivatives of terephthaHc acid. [Pg.492]

Melamine—Formaldehyde Resins. The most versatile textile-finishing resins are the melamine—formaldehyde resins. They provide wash-and-wear properties to ceUulosic fabrics, and enhance the wash durabiHty of flame-retardant finishes. Butylated melamine —formaldehyde resins of the type used in surface coatings may be used in textile printing-ink formulations. A typical textile melamine resin is the dimethyl ether of trimethylolmelamine [1852-22-8] which can be prepared as follows ... [Pg.330]

Butyl polymers are about 8—10 times more resistant to air permeabiUty compared to natural mbber and have excellent resistance to heat and steam or water. This accounts for its use in gaskets and diaphragms for hot water and steam service. In addition, butyl mbber can be compounded to have low residence properties and has found use in high damping mounts for engines, motors, and similar devices. Halobutyl mbbers can be blended with natural mbber, polychloroprene, and EPDM to greatiy enhance theh permeabiUty resistance. [Pg.232]

Wire cords are particularly subject to degradation of their adhesion values by moisture. To combat this, halogenated butyl (HIIR) is used in tire innerliners because of its property of low air and water vapor diffusion rates. Moisture is present in most air pumps and many tires are mounted with water left in the tire on mounting. For these reasons tires and tire compounds are tested extensively at simulated aging conditions in the laboratory and on test vehicles before they are sold to the customer. [Pg.252]

Property Methyl Ethyl / -Propyl Butyl Benzyl... [Pg.293]

Rubber. The mbber industry consumes finely ground metallic selenium and Selenac (selenium diethyl dithiocarbamate, R. T. Vanderbilt). Both are used with natural mbber and styrene—butadiene mbber (SBR) to increase the rate of vulcanization and improve the aging and mechanical properties of sulfudess and low sulfur stocks. Selenac is also used as an accelerator in butyl mbber and as an activator for other types of accelerators, eg, thiazoles (see Rubber chemicals). Selenium compounds are useflil as antioxidants (qv), uv stabilizers, (qv), bonding agents, carbon black activators, and polymerization additives. Selenac improves the adhesion of polyester fibers to mbber. [Pg.337]

The compression set of sihcone mbber is similar to organic types of mbber at low (0—50°C) temperatures, ranging from 5 to 15% (380). Above 50°C, sihcone mbber is superior, but compression set increases with time and temperature. Sihcone mbber is more tear-sensitive than butyl mbber, and the degree of sensitivity is a function of filler size and dispersion, cross-link density, and curing conditions. The electrical properties of sihcone mbber are generally superior to organic mbbers and are retained over a temperature range from —50 to 250°C (51). Typical electrical values for a heat-cured sihcone mbber are shown in Table 9. [Pg.54]

The alkyl group also produces subde changes in the processing of the PVC, the use level and cost of the stabilizer, and in some cases even the final properties of the article, especially the heat distortion temperature or Vicat softening point. Overall, methyl derivatives are most widely used. Butyls are second and octyls a distant third. [Pg.6]

The low vinyl acetate ethylene—vinyl acetate copolymers, ie, those containing 10—40 wt % vinyl acetate, are made by processes similar to those used to make low density polyethylene for which pressures are usually > 103 MPa (15,000 psi). A medium, ie, 45 wt % vinyl acetate copolymer with mbber-like properties is made by solution polymerisation in /-butyl alcohol at 34.5 MPa (5000 psi). The 70—95 wt % vinyl acetate emulsion copolymers are made in emulsion processes under ethylene pressures of 2.07—10.4 MPa (300—1500 psi). [Pg.467]


See other pages where Butylate properties is mentioned: [Pg.1067]    [Pg.624]    [Pg.138]    [Pg.394]    [Pg.143]    [Pg.170]    [Pg.356]    [Pg.489]    [Pg.469]    [Pg.269]    [Pg.419]    [Pg.531]    [Pg.360]    [Pg.42]    [Pg.328]    [Pg.223]    [Pg.234]    [Pg.246]    [Pg.246]    [Pg.253]    [Pg.257]    [Pg.292]    [Pg.47]    [Pg.54]    [Pg.202]    [Pg.244]    [Pg.455]    [Pg.461]    [Pg.463]    [Pg.466]    [Pg.470]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Butyl acetate, physical properties

Butyl alcohol physical properties

Butyl methacrylate physical properties

Butyl methacrylate properties

Butyl rubbers, properties

Mechanical properties butyl rubber

Physical Properties of n-Butyl Alcohol

Properties of Methyl n-Butyl Ketone

Property and Preparation of n-Butyl Nitrate

© 2024 chempedia.info