Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biocompatibility types

Miniaturized catheter-type ISE sensors, such as the implantable probe shown in Figure 5-20 represent the preferred approach for routine clinical in-vivo monitoring of blood electrolytes. For these intravascular measurements the reference electrode is placed outside die artery (in die external arm of die catheter), tints obviating biocompatability and drift problems associated with its direct contact with the blood. [Pg.164]

Similarly, after a longer time of incubation, no significant changes in the cell proliferation rate was detected, as can be seen in the data for 72 h (Figure 13). In fact, this was expected due to the biocompatible nature of xylan. As a natural polyssacharide, this type of biomaterial is considered to be highly stable, non-toxic and hydrophilic (Liu et al., 2008). Accordingly, the alkaline extraction of xylan from corn has proved to be a safe approach for obtaining the polymer with no relevant toxicity (Unpublished data). [Pg.77]

The term "bioenertness" is a relative one since few if any synthetic polymers are totally biocompatible with living tissues. The terra is used here on the basis of preUminary in vitro and in vivo tests, together with chemical evaluations based on analogies with other well-tested systems. Two different types of polyphosphazenes are of interest as bioinert materials those with strongly hydrophobic surface characteristics and those with hydrophilic surfaces. These will be considered in turn. [Pg.166]

In order to enhance the stability of hposomes and to provide a biocompatible outermost surface shucture for controlled immobihzation (see Section IV), isolated monomeric and oligomeric S-layer protein from B. coagulans E38/vl [118,123,143], B. sphaericus CCM 2177, and the SbsB from B. stearothermophilus PV72/p2 [119] have been crystallized into the respective lattice type on positively charged liposomes composed of DPPC, HD A, and cholesterol. Such S-layer-coated hposomes are spherical biomimetic structures (Fig. 18) that resemble archaeal ceUs (Fig. 14) or virus envelopes. The crystallization of S-... [Pg.372]

The flow behavior in miniaturized hemodialyzer modules with two types of biocompatible membrane materials, SMC and SPAN, was investigated by using doubly distilled water as the flowing fluid in both compartments, subsequently termed membrane side (M) and dialysate side (D), respectively (Figure 4.6.1 (c, d)) [12], SMC stands for Synthetically Modified Cellulose and SPAN for Special PolyAcryloNitrile-based copolymer (Akzo Nobel, Membrana GmbH), both types representing standard membrane material. The capillaries made from this hollow... [Pg.458]

With either type of dialysis, studies suggest that recovery of renal function is decreased in ARF patients who undergo dialysis compared with those not requiring dialysis. Decreased recovery of renal function may be due to hemodialysis-induced hypotension causing additional ischemic injury to the kidney. Also, exposure of a patient s blood to bioincompatible dialysis membranes (cuprophane or cellulose acetate) results in complement and leukocyte activation which can lead to neutrophil infiltration into the kidney and release of vasoconstrictive substances that can prolong renal dysfunction.26 Synthetic membranes composed of substances such as polysulfone, polyacrylonitrile, and polymethylmethacrylate are considered to be more biocompatible and would be less likely to activate complement. Synthetic membranes are generally more expensive than cellulose-based membranes. Several recent meta-analyses found no difference in mortality between biocompatible and bioincompatible membranes. Whether biocompatible membranes lead to better patient outcomes continues to be debated. [Pg.368]

As mentioned previously (and discussed in detail in Sec. IX), contact lens products have specific guidelines that focus on compatibility with the contact lens and biocompatibility with the cornea and conjunctiva [75], These solutions are viewed as new medical devices and require testing with the contact lenses with which they are to be used. Tests include a 21-day ocular study in rabbits and employ the appropriate types of contact lenses with which they are to be used and may include the other solutions that might be used with the lens. Additional tests to evaluate cytotoxicity potential, acute toxicity, sensitization potential (allergenicity), and risks specific to the preparation are also required [75-77], These tests are sufficient to meet requirements in the majority of countries, though testing requirements for Japan are currently much more extensive. [Pg.427]

Deprotection of X, and subsequent oxidation, reduction, and acetylation reactions can, with care, be carried out without decomposition of the inorganic backbone. Reactions of this type are of particular interest for the synthesis of bioactive or biocompatible polyphosphazenes. [Pg.257]

Both types are hydrophobic materials that, depending on the side group arrangements, can exist as elastomers or as microcrystalline fiber- or film-forming materials. Preliminary studies have suggested that these two classes of polyphosphazenes are inert and biocompatible in subcutaneous tissue implantation experiments. [Pg.259]

The effect of the material on cellular metabolism is also an important measure of biocompatibility. To determine such effects, cultured ex vivo cells can be exposed to the polymer and the growth rates compared to controls [216,217], The metabolic function of the cells can be tested by assay for production of a marker enzyme. An additional advantage of this type of test is that it avoids the use of live animals. [Pg.542]

Despite the evidence for the cytotoxicity of CNTs, there are an increasing number of published studies that support the potential development of CNT-based biomaterials for tissue regeneration (e.g., neuronal substrates [143] and orthopedic materials [154—156]), cancer treatment [157], and drug/vaccine delivery systems [158, 159]. Most of these applications will involve the implantation and/or administration of such materials into patients as for any therapeutic or diagnostic agent used, the toxic potential of the CNTs must be evaluated in relation to their potential benefits [160]. For this reason, detailed investigations of the interactions between CNTs/CNT-based implants and various cell types have been carried out [154, 155, 161]. A comprehensive description of such results, however, is beyond the scope of this chapter. Extensive reviews on the biocompatibility of implantable CNT composite materials [21, 143, 162] and of CNT drug-delivery systems [162] are available. [Pg.198]

It did not give rise to phase separation or precipitation. Similar behavior was observed when other types of polysaccharides were examined [53,54]. By now all the commercially important polysaccharides have been applied to the fabrication of hybrid silica nanocomposites in accordance with Scheme 3.2. What is more, various proteins have been entrapped in silica by the same means. In all instances the THEOS demonstrated good biocompatibility with biopolymers, even though its amount in formulations was sometimes up to 60 wt%. Biopolymer solutions after the precursor admixing remained homogeneous to the point of transition into a gel state. [Pg.89]

Olbrich, C. and Muller, R.H., Tabatt, K., Kaiser, O., Schulze, C., and Schade, R., Stable biocompatible adjuvants — a new type of adjuvant based on solid lipid nanoparticles a study on cytotoxicity, compatibility and efficacy in chicken, Alternatives to Laboratory Animals, 2002, 30, 443 158. [Pg.16]

Many kinds of nonbiodegradable vinyl-type hydrophilic polymers were also used in combination with aliphatic polyesters to prepare amphiphilic block copolymers. Two typical examples of the vinyl-polymers used are poly(/V-isopropylacrylamide) (PNIPAAm) [149-152] and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) [153]. PNIPAAm is well known as a temperature-responsive polymer and has been used in biomedicine to provide smart materials. Temperature-responsive nanoparticles or polymer micelles could be prepared using PNIPAAm-6-PLA block copolymers [149-152]. PMPC is also a well-known biocompatible polymer that suppresses protein adsorption and platelet adhesion, and has been used as the hydrophilic outer shell of polymer micelles consisting of a block copolymer of PMPC -co-PLA [153]. Many other vinyl-type polymers used for PLA-based amphiphilic block copolymers were also introduced in a recent review [16]. [Pg.76]

Neuss and coworkers have reported the possibility of SMPs using PCL dimethacrylate copolymers as cellular scaffold for tissue engineering. Behaviors of different cells from three different species (human mesenchymal stem cells, human mesothelial cells, and rat mesothelial cells) on the matrices were investigated, and the differentiation capacity of mesenchymal stem cells on the matrices was also analyzed [329]. The SMPs proved biocompatibility for all tested cell types, supporting viability and proliferation. The SMPs also supported the osteogenic and adipogenic differentiation of human mesenchymal stem cells 3 weeks after induction. [Pg.105]


See other pages where Biocompatibility types is mentioned: [Pg.135]    [Pg.298]    [Pg.54]    [Pg.57]    [Pg.213]    [Pg.246]    [Pg.2]    [Pg.66]    [Pg.90]    [Pg.113]    [Pg.586]    [Pg.586]    [Pg.587]    [Pg.597]    [Pg.154]    [Pg.26]    [Pg.27]    [Pg.266]    [Pg.505]    [Pg.542]    [Pg.545]    [Pg.80]    [Pg.52]    [Pg.21]    [Pg.26]    [Pg.102]    [Pg.375]    [Pg.40]    [Pg.54]    [Pg.75]    [Pg.385]    [Pg.465]    [Pg.492]    [Pg.583]    [Pg.590]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Biocompatibility

© 2024 chempedia.info