Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry sensitivity

Highly sensitive iastmmental techniques, such as x-ray fluorescence, atomic absorption spectrometry, and iaductively coupled plasma optical emission spectrometry, have wide appHcation for the analysis of silver ia a multitude of materials. In order to minimize the effects of various matrices ia which silver may exist, samples are treated with perchloric or nitric acid. Direct-aspiration atomic absorption (25) and iaductively coupled plasma (26) have silver detection limits of 10 and 7 l-lg/L, respectively. The use of a graphic furnace ia an atomic absorption spectrograph lowers the silver detection limit to 0.2 l-ig/L. [Pg.91]

For the deterrnination of trace amounts of bismuth, atomic absorption spectrometry is probably the most sensitive method. A procedure involving the generation of bismuthine by the use of sodium borohydride followed by flameless atomic absorption spectrometry has been described (6). The sensitivity of this method is given as 10 pg/0.0044M, where M is an absorbance unit the precision is 6.7% for 25 pg of bismuth. The low neutron cross section of bismuth virtually rules out any deterrnination of bismuth based on neutron absorption or neutron activation. [Pg.127]

I have carried out widespread studies on the application of a sensitive and selective preconcentration method for the determination of trace a mounts of nickel by atomic absorption spectrometry. The method is based on soi ption of Cu(II) ions on natural Analcime Zeolit column modified with a new Schiff base 5-((4-hexaoxyphenylazo)-N-(n-hexyl-aminophenyl)) Salicylaldimine and then eluted with O.IM EDTA and determination by EAAS. Various parameters such as the effect of pH, flow rate, type and minimum amount of stripping and the effects of various cationic interferences on the recovery of ions were studied in the present work. [Pg.51]

In this work, a method based on the reduction potential of ascorbic acid was developed for the sensitive detennination of trace of this compound. In this method ascorbic acid was added on the Cr(VI) solution to reduced that to Cr(III). Cr(III) produced in solution was quantitatively separated from the remainder of Cr(VI). The conditions were optimized for efficient extraction of Cr(III). The extracted Cr(III) was finally mineralized with nitric acid and sensitively analyzed by electro-thermal atomic absorption spectrometry. The determinations were carried out on a Varian AA-220 atomic absolution equipped with a GTA-110 graphite atomizer. The results obtained by this method were compared with those obtained by the other reported methods and it was cleared that the proposed method is more precise and able to determine the trace of ascorbic acid. Table shows the results obtained from the determination of ascorbic acid in two real samples by the proposed method and the spectrometric method based on reduction of Fe(III). [Pg.154]

Note that the interfacing of LC techniques with MS puts significant constraints on the solvents that can be used i.e., they must be volatile, with a low salt concentration, for MS compatibility. Narrow-bore columns, which use much smaller amounts of salt and organic modifier, appear to have potential for facilitating IEC-MS applications.40 Despite the excellent sensitivity of MS detection for most elements, however, there are cases where matrix effects can interfere. In this situation, combination of IEC with atomic emission spectrometry (AES) or atomic absorption spectrometry (AAS) may be preferable, and can also provide better precision.21 32 4142 Other types of... [Pg.288]

The low concentrations of lead in plasma, relative to red blood cells, has made it extremely difficult to accurately measure plasma lead concentrations in humans, particularly at low PbB concentrations (i.e., less than 20 pg/dL). However, more recent measurements have been achieved with inductively coupled mass spectrometry (ICP-MS), which has a higher analytical sensitivity than earlier atomic absorption spectrometry methods. Using this analytical technique, recent studies have shown that plasma lead concentrations may correlate more strongly with bone lead levels than do PbB concentrations (Cake et al. 1996 Hemandez-Avila et al. 1998). The above studies were conducted in adults, similar studies of children have not been reported. [Pg.313]

Bishop [75] determined barium in seawater by direct injection Zeeman-modulated graphite furnace atomic absorption spectrometry. The V203/Si modifier added to undiluted seawater samples promotes injection, sample drying, graphite tube life, and the elimination of most seawater components in a slow char at 1150-1200 °C. Atomisation is at 2600 °C. Detection is at 553.6 nm and calibration is by peak area. Sensitivity is 0.8 absorbance s/ng (Mo = 5.6 pg 0.0044 absorbance s) at an internal argon flow of 60 ml/min. The detection limit is 2.5 pg barium in a 25 ml sample or 0.5 pg using a 135 ml sample. Precision is 1.2% and accuracy is 23% for natural seawater (5.6-28 xg/l). The method works well in organic-rich seawater matrices and sediment porewaters. [Pg.141]

Benzwi [409] determined lithium in Dead Sea water using atomic absorption spectrometry. The sample was passed through a 0.45 pm filter and lithium was then determined by the method of standard additions. Solutions of lithium in hexanol and 2-ethylhexanol gave greatly enhanced sensitivity. [Pg.191]

Graphite-furnace atomic absorption spectrometry, although element-selective and highly sensitive, is currently unable to directly determine manganese at the lower end of their reported concentration ranges in open ocean waters. Techniques that have been successfully employed in recent environmental investigations have thus used a preliminary step to concentrate the analyte and separate it from the salt matrix prior to determination by atomic absorption spectrometry. [Pg.194]

Although the neutron activation analysis is inherently more sensitive than the atomic absorption spectrometry, both procedures yield a reliable measurement of vanadium in seawater at the natural levels of concentration. [Pg.232]

Cabezon et al. [662] simultaneously separated copper, cadmium, and cobalt from seawater by coflotation with octadecylamine and ferric hydroxide as collectors prior to analysis of these elements by flame atomic absorption spectrometry. The substrates were dissolved in an acidified mixture of ethanol, water, and methyl isobutyl ketone to increase the sensitivity of the determination of these elements by flame atomic absorption spectrophotometry. The results were compared with those of the usual ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone extraction method. While the mean recoveries were lower, they were nevertheless considered satisfactory. [Pg.238]

Tominaga et al. [682,683] studied the effect of ascorbic acid on the response of these metals in seawater obtained by graphite-furnace atomic absorption spectrometry from standpoint of variation of peak times and the sensitivity. Matrix interferences from seawater in the determination of lead, magnesium, vanadium, and molybdenum were suppressed by addition of 10% (w/v) ascorbic acid solution to the sample in the furnace. Matrix effects on the determination of cobalt and copper could not be removed in this way. These workers propose a direct method for the determination of lead, manganese, vanadium, and molybdenum in seawater. [Pg.246]

Mykytiuk et al. [184] have described a stable isotope dilution sparksource mass spectrometric method for the determination of cadmium, zinc, copper, nickel, lead, uranium, and iron in seawater, and have compared results with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. These workers found that to achieve the required sensitivity it was necessary to preconcentrate elements in the seawater using Chelex 100 [121] followed by evaporation of the desorbed metal concentrate onto a graphite or silver electrode for isotope dilution mass spectrometry. [Pg.287]

Gagnon [203] has described a rapid and sensitive AAS method developed from the work of Crisp et al. [200] for the determination of anionic detergents at the ppb level in natural waters. The method is based on determination by atomic absorption spectrometry using the bis(ethylene-diamine) copper (II) ion. The method is suitable for detergent concentrations up to 50 ig/l but it can be extended up to 15 mg/1. The limit of detection is 0.31 ig/1. [Pg.402]

Nebulization is inefficient and therefore not appropriate for very small liquid samples. Introducing samples into the plasma in liquid form reduces the potential sensitivity because the analyte flux is limited by the amount of solvent that the plasma will tolerate. To circumvent these problems a variety of thermal and electrothermal vaporization devices have been investigated. Two basic approaches are in use. The first involves indirect vaporization of the sample in an electrothermal vaporizer, e.g. a carbon rod or tube furnace or heated metal filament as commonly used in atomic absorption spectrometry [7-9], The second involves inserting the sample into the base of the... [Pg.39]

Various workers have discussed the application of atomic absorption spectrometry to the determination of selenium in rocks [159,160] achieving detection limits of 0.06g g-1 [159] and 1.4xl0 10g g-1 [160] respectively. Hydride generation and measurement of hydride fluorescence has been used to determine selenium [120, 161] with a sensitivity of 0.06ug Se mL 1 which is 5-30 times than is achieved by conventional atomic absorption spectrometry. [Pg.363]

The application of a combination of gas chromatography and atomic absorption spectrometry to the determination of tetraalkyllead compounds has been studied by Chau et al. [f 7] and by Segar [20], In these methods the gas chromatography flame combination showed a detection limit of about O.lpg Pb. Chau et al. [f 7, 18] have applied the silica furnace in the atomic absorption unit and have shown that the sensitivity limit for the detection of lead can be enhanced by three orders of magnitude. They applied the method to the determination of tetramethyllead in sediment systems. [Pg.389]

The measurement of very low levels of environmental pollutants is becoming increasingly important. The determination of lead, a cumulative toxin, is a good example. The current maximum allowable concentration of lead in British drinking water, before it enters the distribution network, is SO ng ml [29]. Although electrothermal atomization atomic-absorption spectrometry (AAS) can be used to measure this and lower concentrations, it is slow and requires considerable effort to ensure accurate results. Flames can provide simple and effective atom sources, but, if samples are aspirated directly, do not provide sufficient sensitivity. Thus, if a flame is to be used as the atom source, a preconcentration step is required. [Pg.151]

Molybdenum may be identified at trace concentrations by flame atomic absorption spectrometry using nitrous oxide-acetylene flame. The metal is digested with nitric acid, diluted and analyzed. Aqueous solution of its compounds alternatively may be chelated with 8—hydroxyquinobne, extracted with methyl isobutyl ketone, and analyzed as above. The metal in solution may also be analyzed by ICP/AES at wavelengths 202.03 or 203.84 nm. Other instrumental techniques to measure molybdenum at trace concentrations include x-ray fluorescence, x-ray diffraction, neutron activation, and ICP-mass spectrometry, this last being most sensitive. [Pg.584]

These vitamers are UV absorbers, but their detection is complicated by the low level present in foods and the low sensitivity of this detector. Other detectors, like flame atomic absorption spectrometry and inductively coupled plasma (1CP)-MS, may be applied, but without much increase in sensitivity. [Pg.634]

Nickel is normally present at very low levels in biological samples. To determine trace nickel levels in these samples accurately, sensitive and selective methods are required. Atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without preconcentration or separation steps, are the most common methods. These methods have been adopted in standard procedures by EPA, NIOSH, lARC, and the International Union of Pure and Applied... [Pg.207]

Describe suitable instrumentation for sensitive analytical measurements in atomic absorption spectrometry. Include a discussion of the ways in which the atomic population in the atom cell may be maximized and why the light source is always a line source. [Pg.158]


See other pages where Atomic absorption spectrometry sensitivity is mentioned: [Pg.171]    [Pg.335]    [Pg.134]    [Pg.248]    [Pg.251]    [Pg.610]    [Pg.221]    [Pg.443]    [Pg.226]    [Pg.227]    [Pg.227]    [Pg.241]    [Pg.279]    [Pg.402]    [Pg.457]    [Pg.125]    [Pg.629]    [Pg.537]    [Pg.1482]    [Pg.294]    [Pg.327]    [Pg.362]    [Pg.416]    [Pg.537]    [Pg.1482]    [Pg.27]    [Pg.158]    [Pg.158]    [Pg.225]   
See also in sourсe #XX -- [ Pg.531 ]




SEARCH



Absorption spectrometry

Atomic absorption sensitivity

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

© 2024 chempedia.info