Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutrons absorption

It was found that that in the case of soft beta and X-ray radiation the IPs behave as an ideal gas counter with the 100% absorption efficiency if they are exposed in the middle of exposure range ( 10 to 10 photons/ pixel area) and that the relative uncertainty in measured intensity is determined primarily by the quantum fluctuations of the incident radiation (1). The thermal neutron absorption efficiency of the present available Gd doped IP-Neutron Detectors (IP-NDs) was found to be 53% and 69%, depending on the thicknes of the doped phosphor layer ( 85pm and 135 pm respectively). No substantial deviation in the IP response with the spatial variation over the surface of the IP was found, when irradiated by the homogeneous field of X-rays or neutrons and deviations were dominated by the incident radiation statistics (1). [Pg.507]

Beryllium is used in nuclear reactors as a reflector or moderator for it has a low thermal neutron absorption cross section. [Pg.12]

When hydrogen is burned up in the nuclear furnace of a star, helium burning takes over, forming carbon, which in turn leads to oxygen, etc. Subsequent emission processes releasing a-particles, equilibrium processes, neutron absorption, proton capture, etc. lead to heavier elements. [Pg.35]

Thermal neutron absorption cross section. Simply designated cross section, it represents the ease with which a given nuclide can absorb a thermal neutron (energy less than or equal to 0.025 eV) and become a different nuclide. The cross section is given here in units of barns (1 barn = 10 cm ). If the mode of reaction is other than ( ,y), it is so indicated. [Pg.333]

Hafnium neutron absorption capabilities have caused its alloys to be proposed as separator sheets to allow closer spacing of spent nuclear fuel rods in interim holding ponds. Hafnium is the preferred material of constmction for certain critical mass situations in spent fuel reprocessing plants where hafnium s excellent corrosion resistance to nitric acid is also important. [Pg.443]

Nuclear wastes are classified according to the level of radioactivity. Low level wastes (LLW) from reactors arise primarily from the cooling water, either because of leakage from fuel or activation of impurities by neutron absorption. Most LLW will be disposed of in near-surface faciHties at various locations around the United States. Mixed wastes are those having both a ha2ardous and a radioactive component. Transuranic (TRU) waste containing plutonium comes from chemical processes related to nuclear weapons production. These are to be placed in underground salt deposits in New Mexico (see... [Pg.181]

Predictions in the 1960s of the growth in nuclear power indicated the need for recycling (qv) of nuclear fuels. RadionucHdes involved are uranium-235, uranium-238 [24678-82-8] and plutonium-239. This last is produced by neutron absorption in the reactions ... [Pg.182]

Several components are required in the practical appHcation of nuclear reactors (1 5). The first and most vital component of a nuclear reactor is the fuel, which is usually uranium slightly enriched in uranium-235 [15117-96-1] to approximately 3%, in contrast to natural uranium which has 0.72% Less commonly, reactors are fueled with plutonium produced by neutron absorption in uranium-238 [24678-82-8]. Even more rare are reactors fueled with uranium-233 [13968-55-3] produced by neutron absorption in thorium-232 (see Nuclear reactors, nuclear fuel reserves). The chemical form of the reactor fuel typically is uranium dioxide, UO2, but uranium metal and other compounds have been used, including sulfates, siUcides, nitrates, carbides, and molten salts. [Pg.210]

The role of the reactor may be either as a converter, which produces some plutonium by neutron absorption in uranium-238 but depends on uranium-235 for most of the fission, or as a breeder, which contains a large amount of plutonium and produces more fissile material than it consumes. Breeding is also possible using uranium-233 produced by neutron absorption in thorium-232. [Pg.211]

The coolant for the HTGR is helium. The helium is not corrosive has good heat properties, having a specific heat that is much greater than that of CO2 does not condense and can operate at any temperature has a negligible neutron absorption cross section and can be used in a direct cycle, driving a gas turbine with high efficiency. [Pg.214]

Some properties of silver are summarized in Table 1. The solar energy transmittance and neutron-absorption characteristics of silver are shown in Eigures 1 and 2, respectively. Thermal properties are given in Table 2. Other properties are given in References 1,3, and 4. [Pg.80]

Because of its low neutron absorption, zirconium is an attractive stmctural material and fuel cladding for nuclear power reactors, but it has low strength and highly variable corrosion behavior. However, ZircaHoy-2, with a nominal composition of 1.5 wt % tin, 0.12 wt % iron, 0.05 wt % nickel, 0.10 wt % chromium, and the remainder zirconium, can be used ia all nuclear power reactors that employ pressurized water as coolant and moderator (see... [Pg.63]

Zirconium is used as a containment material for the uranium oxide fuel pellets in nuclear power reactors (see Nuclearreactors). Zirconium is particularly usehil for this appHcation because of its ready availabiUty, good ductiUty, resistance to radiation damage, low thermal-neutron absorption cross section 18 x 10 ° ra (0.18 bams), and excellent corrosion resistance in pressurized hot water up to 350°C. Zirconium is used as an alloy strengthening agent in aluminum and magnesium, and as the burning component in flash bulbs. It is employed as a corrosion-resistant metal in the chemical process industry, and as pressure-vessel material of constmction in the ASME Boiler and Pressure Vessel Codes. [Pg.426]

Hafnium-free zirconium is particularly weU-suited for these appHcations because of its ductiHty, excellent oxidation resistance in pure water at 300°C, low thermal neutron absorption, and low susceptibiHty to radiation. Nuclear fuel cladding and reactor core stmctural components are the principal uses for zirconium metal. [Pg.433]

For the deterrnination of trace amounts of bismuth, atomic absorption spectrometry is probably the most sensitive method. A procedure involving the generation of bismuthine by the use of sodium borohydride followed by flameless atomic absorption spectrometry has been described (6). The sensitivity of this method is given as 10 pg/0.0044M, where M is an absorbance unit the precision is 6.7% for 25 pg of bismuth. The low neutron cross section of bismuth virtually rules out any deterrnination of bismuth based on neutron absorption or neutron activation. [Pg.127]

Boron [7440-42-8] B, is unique in that it is the only nonmetal in Group 13 (IIIA) of the Periodic Table. Boron, at wt 10.81, at no. 5, has more similarity to carbon and siUcon than to the other elements in Group 13. There are two stable boron isotopes, B and B, which are naturally present at 19.10—20.31% and 79.69—80.90%, respectively. The range of the isotopic abundancies reflects a variabiUty in naturally occurring deposits such as high B ore from Turkey and low °B ore from California. Other boron isotopes, B, B, and B, have half-Hves of less than a second. The B isotope has a very high cross-section for absorption of thermal neutrons, 3.835 x 10 (3835 bams). This neutron absorption produces alpha particles. [Pg.183]

Uses. Apphcations for boron carbide relate either to its hardness or its high neutron absorptivity ( B isotope). Hot-pressed boron carbide finds use as wear parts, sandblast no22les, seals, and ceramic armor plates but in spite of its hardness, it finds Httie use as an abrasive. However, this property makes it particulady usehil for dressing grinding wheels. [Pg.220]

Boron carbide is used in the shielding and control of nuclear reactors (qv) because of its neutron absorptivity, chemical inertness, and radiation stabihty. For this appHcation it may be molded, bonded, or the granular material may be packed by vibration. [Pg.220]

Neutron economy in graphite occurs because pure graphite has a neutron capture cross section of only 0.0032 0.002 x lO " cm. Taking into account the density of reactor grade graphite (bulk density 1.71 g/cm ), the bulk neutron absorption coefficient is 0.0003/cm. Thus a slow neutron may travel >32 m in graphite without capture. [Pg.513]

S2-4 Helium burning as additional process for nucleogenesis 19S4 Slow neutron absorption added to stellar reactions 195S-7 Comprehensive theory of stellar synthesis of all elements in observed cosmic abundances 196S 2.7 K radiation detected... [Pg.5]

Atomic number Atomic weight Crystal structure Melting Density Thermal Electrical resistivity (at 20°C) Temperature coefficient of resistivity Specific Thermal Standard electrode potential Thermal neutron absorption cross-section. [Pg.882]


See other pages where Neutrons absorption is mentioned: [Pg.434]    [Pg.506]    [Pg.191]    [Pg.443]    [Pg.464]    [Pg.213]    [Pg.218]    [Pg.223]    [Pg.244]    [Pg.278]    [Pg.382]    [Pg.370]    [Pg.5]    [Pg.430]    [Pg.432]    [Pg.433]    [Pg.439]    [Pg.235]    [Pg.223]    [Pg.319]    [Pg.12]    [Pg.13]    [Pg.74]    [Pg.144]    [Pg.166]    [Pg.945]   
See also in sourсe #XX -- [ Pg.275 ]

See also in sourсe #XX -- [ Pg.275 ]

See also in sourсe #XX -- [ Pg.143 , Pg.201 , Pg.223 ]

See also in sourсe #XX -- [ Pg.166 ]

See also in sourсe #XX -- [ Pg.125 , Pg.388 , Pg.523 ]

See also in sourсe #XX -- [ Pg.399 ]

See also in sourсe #XX -- [ Pg.254 , Pg.258 ]

See also in sourсe #XX -- [ Pg.689 , Pg.908 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.681 ]

See also in sourсe #XX -- [ Pg.448 , Pg.513 , Pg.579 ]




SEARCH



© 2024 chempedia.info