Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Values assessments pollution

There was also concern that there were no significant differences with respect to the value of pollutants, according to the times of collection and you can see that there were no significant differences for the parameters assessed. [Pg.376]

Note The souree for the above risk values is Table III-7, Preliminary Caneer Poteuey Values for Uie Air Toxies Hot Spots aet, found in California Air Pollution Control Offieers Assoeiation, Air Toxics Hot Spots Program, Revised 1192 Risk Assessment Guidelines," page III-28, published Oetober 1993. [Pg.417]

The half-life, f1/2, of a substance is the time needed for its concentration to fall to one-half its initial value. Knowing the half-lives of pollutants such as chlorofluoro-carbons allows us to assess their environmental impact. If their half-lives are short, they may not survive long enough to reach the stratosphere, where they can destroy ozone. Half-lives are also important in planning storage systems for radioactive materials, because the decay of radioactive nuclei is a first-order process. [Pg.663]

Ideally, to characterize the spatial distribution of pollution, one would like to know at each location x within the site the probability distribution of the unknown concentration p(x). These distributions need to be conditional to the surrounding available information in terms of density, data configuration, and data values. Most traditional estimation techniques, including ordinary kriging, do not provide such probability distributions or "likelihood of the unknown values pC c). Utilization of these likelihood functions towards assessment of the spatial distribution of pollutants is presented first then a non-parametric method for deriving these likelihood functions is proposed. [Pg.109]

Assessment of spatial distributions of pollutant concentrations is a very specific problem that requires more than blind mapping of these concentrations. Not only must the criterion of estimation be chosen carefully to allow zooming on the most critical values (the high concentrations), but also the evaluation of the potential error of estimation calls for a much more meaningful characteristic than the traditional estimation variance. Finally, the risks a and p of making wrong decisions on whether to clean or not must be assessed. [Pg.117]

Because the significance of exposure has only been considered over the past few years, there is not as wide a selection of exposure models available as that for fate models. The latter have been applied for several decades to the calculation of ambient exposure levels compared with some standard values. Papers illustrative of human exposure assessments in this symposium include one on airborne pollutant exposure assessments by Anderson (2), a generic approach to estimating exposure in risk studies by Fiksel (5), and a derivation of pollutant limit values in soil or water based on acceptable doses to humans by Rosenblatt, Small and Kainz (6). [Pg.95]

Application of the Preliminary Pollutant Limit Value (PPLV) Environmental Risk Assessment Approach to Selected Land Uses... [Pg.263]

The unique appearance of an infrared spectrum has resulted in the extensive use of infrared spectrometry to characterize such materials as natural products, polymers, detergents, lubricants, fats and resins. It is of particular value to the petroleum and polymer industries, to drug manufacturers and to producers of organic chemicals. Quantitative applications include the quality control of additives in fuel and lubricant blends and to assess the extent of chemical changes in various products due to ageing and use. Non-dispersive infrared analysers are used to monitor gas streams in industrial processes and atmospheric pollution. The instruments are generally portable and robust, consisting only of a radiation source, reference and sample cells and a detector filled with the gas which is to be monitored. [Pg.395]

Despite the technical advances in the past decade, no apparatus for measurement of the odour strength has been developed. Therefore, odour pollution studies cannot be performed without using human noses. In general, the efect of polluting odours can be studied either by direct assessment in the ambient air or by means of a dispersion calculation. The first method requires a number of observers to be placed in the vincinity of the odour source (3,7). The latter a dispersion model and an input value. For reasons of simplicity this method is most frequently used in the Netherlands. [Pg.125]

The use of bioassays as an analytical tool for the assessment of environmental pollution is relatively new in Columbia. Even though the Ministry of Health established in Decree 1594 (1984) that environmental control agencies should propose acceptable LC50 values for 22 substances of ecotoxicological interest in order to protect fauna and flora, none of the entities has carried out this action up to mid-1998. [Pg.44]

Chapter 5 of the document reviews the UFs used by UK Government departments, agencies, and their advisory committees in human health risk assessment. Default values for UFs are provided in Table 3 in the UK document with the factors separated into four classes (1) animal-to-human factor, (2) human variability factor, (3) quality or quantity of data factor, and (4) severity of effect factor. The following chemical sectors are addressed food additives and contaminants, pesticides and biocides, air pollutants, drinking water contaminants, soil contaminants, consumer products and cosmetics, veterinary products, human medicines, medical devices, and industrial chemicals. [Pg.223]

When epidemiological studies form the basis for the risk assessment of a single chemical or even complex mixtures, such as various combustion emissions, it may be stated that in those cases the effects of combined action of chemicals have been incorporated. Examples can, for instance, be found in the updated WHO Air Quality guidelines (WHO 2000). Thus, the guideline value for, e.g., ozone was derived from epidemiological studies of persons exposed to ozone as part of the total mixture of chemicals in polluted ambient air. In addition, the risk estimate for exposure to polycyclic aromatic hydrocarbons was derived from studies on coke-oven workers heavily exposed to benzo[fl]pyrene as a component of a mixture of PAH and possibly many other chemicals at the workplace. Therefore, in some instances the derivation of a tolerable intake for a single compound can be based on studies where the compound was part of a complex chemical mixture. [Pg.382]

Biochemical oxygen demand (BOD) is one of the most widely determined parameters in managing organic pollution. The conventional BOD test includes a 5-day incubation period, so a more expeditious and reproducible method for assessment of this parameter is required. Trichosporon cutaneum, a microorganism formerly used in waste water treatment, has also been employed to construct a BOD biosensor. The dynamic system where the sensor was implemented consisted of a 0.1 M phosphate buffer at pH 7 saturated with dissolved oxygen which was transferred to a flow-cell at a rate of 1 mL/min. When the current reached a steady-state value, a sample was injected into the flow-cell at 0.2 mL/min. The steady-state current was found to be dependent on the BOD of the sample solution. After the sample was flushed from the flow-cell, the current of the microbial sensor gradually returned to its initial level. The response time of microbial sensors depends on the nature of the sample solution concerned. A linear relationship was foimd between the current difference (i.e. that between the initial and final steady-state currents) and the 5-day BOD assay of the standard solution up to 60 mg/L. The minimum measurable BOD was 3 mg/L. The current was reproducible within 6% of the relative error when a BOD of 40 mg/L was used over 10 experiments [128]. [Pg.127]

Chapman, P.M. and Maim, G.S. (1999). Sediment quality values (SQVs) and ecological risk assessment (ERA). Marine Pollution Bulletin, vol 38, no 5, 339-334. [Pg.127]

The partition coefficient Kq of an organic compound in the 1-octanol/water system is used to assess the bioaccumulation potential and the distribution pattern of drugs and pollutants. The partition coefficient of imidazole and ILs strongly depends on the hydrogen bond formed by these molecules and is less than one due to the high solubility in water. The low value of the 1-octanol/water partition coefficient is required for new substances, solvents, insecticides to avoid bioaccumulation. Kqw is an extremely important quantity because it is the basis of correlations to calculate bioaccumulation, toxicity, and sorption to soils and sediments. Computing the activity of a chemical in human, fish, or animal lipid, which is where pollutants that are hydrophobic will appear, is a difficult task. Thus, it is simpler to measure the 1-octanol/water partition coefficient. This parameter is used as the primary parameter characterizing hydrophobisity. [Pg.31]


See other pages where Values assessments pollution is mentioned: [Pg.329]    [Pg.70]    [Pg.507]    [Pg.422]    [Pg.750]    [Pg.78]    [Pg.89]    [Pg.157]    [Pg.315]    [Pg.263]    [Pg.151]    [Pg.310]    [Pg.228]    [Pg.47]    [Pg.115]    [Pg.419]    [Pg.148]    [Pg.172]    [Pg.236]    [Pg.240]    [Pg.92]    [Pg.328]    [Pg.398]    [Pg.552]    [Pg.555]    [Pg.651]    [Pg.651]    [Pg.657]    [Pg.697]    [Pg.18]    [Pg.279]    [Pg.82]    [Pg.118]    [Pg.429]    [Pg.42]   
See also in sourсe #XX -- [ Pg.244 , Pg.245 ]




SEARCH



Pollution assessment

Value assessment

© 2024 chempedia.info