Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Estimation Techniques

There are many shortcut techniques available for estimating the water content of sweet gas. [Pg.108]


We therefore use smooth density estimation techniques that are more reliable than the histogram estimates. To improve the reliability for rare amino acid pairs, we use clustering techniques that identify similar pairs that can be modeled by the same density. [Pg.214]

The polynomials Wa q) q = qik) and Wy q) (q = qi) needed to specify the pair and surface potentials are constructed from the set of such q realized in a data base of 266 proteins with a total of 46100 residues by means of density estimation techniques. [Pg.217]

One therefore needs a smooth density estimation techniques that is more reliable than the histogram estimates. The automatic estimation poses additional problems in that the traditional statistical techniques for estimating densities usually require the interactive selection of some smoothing parameter (such as the bin size). Some publicly available density estimators are available, but these tended to oversmooth the densities. So we tried a number of ideas based on numerical differentiation of the empirical cdf to devise a better density estimator. [Pg.220]

Researchers must be particularly cautious when using one estimated property as the input for another estimation technique. This is because possible error can increase significantly when two approximate techniques are combined. Unfortunately, there are some cases in which this is the only available method for computing a property. In this case, researchers are advised to work out the error propagation to determine an estimated error in the final answer. [Pg.121]

Table 4. Pilot-Plant Cost Estimating Techniques... Table 4. Pilot-Plant Cost Estimating Techniques...
Numerous other methods have been used to predict properties of gases and Hquids. These include group contribution, reference substance, approaches, and many others. However, corresponding states theory has been one of the most thoroughly investigated methods and has become an important basis for the development of correlation and property estimation techniques. The methods derived from the corresponding states theory for Hquid and gas property estimation have proved invaluable for work such as process and equipment design. [Pg.239]

Other data and estimation techniques for the elements are contained in Gates and Thodos, Am. Jn.st. Chem. Eng. J., 6 (1960) 50-54 and Ohse and von Tippelsldrch, High Temperature.s—High Pre.s.sure.s, 9... [Pg.180]

Heat Capacity, C° Heat capacity is defined as the amount of energy required to change the temperature of a unit mass or mole one degree typical units are J/kg-K or J/kmol-K. There are many sources of ideal gas heat capacities in the hterature e.g., Daubert et al.,"" Daubert and Danner,JANAF thermochemical tables,TRC thermodynamic tables,and Stull et al. If C" values are not in the preceding sources, there are several estimation techniques that require only the molecular structure. The methods of Thinh et al. and Benson et al. " are the most accurate but are also somewhat complicated to use. The equation of Harrison and Seaton " for C" between 300 and 1500 K is almost as accurate and easy to use ... [Pg.391]

Enthalpy of Fusion The enthalpy (heat) of fusion AiTfus is defined as the difference of the enthalpies of a unit mole or mass of a solid and hquid at its melting temperature and one atmosphere pressure of a pure component. There are no generally apphcable estimation techniques that are very accurate. However, if the melting temperature is known, the atomic group contribution method of Chickos et al. " yields approximate results ... [Pg.394]

There are a number of reliable estimating techniques for obtaining pure-component hq uid heat capacity as a function of tem )erature, including Ruzicka and Dolmalsld, Tarakad and Danner, " and Lee and Kesler. These methods are somewhat compheated. The relatively single atomic group contribution approach of Chueh and Swanson for liquid heat capacity at 29.3.15 K is presented here ... [Pg.395]

To develop an emission inventory for an area, one must (1) list the types of sources for the area, such as cupolas, automobiles, and home fireplaces (2) determine the type of air pollutant emission from each of the listed sources, such as particulates and SO2 (3) examine the literature (9) to find valid emission factors for each of the pollutants of concern (e.g., "particulate emissions for open burning of tree limbs and brush are 10 kg per ton of residue consumed") (4) through an actual count, or by means of some estimating technique, determine the number and size of specific sources in the area (the number of steelmaking furnaces can be counted, but the number of home fireplaces will probably have to be estimated) and (5) multiply the appropriate numbers from (3) and (4) to obtain the total emissions and then sum the similar emissions to obtain the total for the area. [Pg.93]

Within 6 months after enactment of the Qean Air Act Amendments of 1990, and at least every 3 years thereafter, the Administrator shall review and, if necessary, revise, the methods ( emission factors ) used for purposes of this Act to estimate the quantity of emissions of carbon monoxide, volatile organic compounds, and oxides of nitrogen from sources of such air pollutants (including area sources and mobile sources). In addition, the Administrator shall permit any person to demonstrate improved emissions estimating techniques, and following approval of such techniques, the Administrator shall authorise the use of such techniques. Any such technique may be approved only after appropriate public participation. Until the Administrator has completed the revision required by this section, nothing in this section shall be construed to affect the validity of emission factors established by the Administrator before the date of the enactment of the Clean Air Act Amendments of 1990. [Pg.405]

First, one must estimate air or other gas leakage into the vacuum system. Of course every effort is made to keep it as tight as possible. The author is aware of possible leak points being sealed with polystyrene, which produces an excellent seal. When tests cannot be made, one must use rules of thumb. Many such rough estimating techniques exist. [Pg.199]

The usual estimating technique is to collect equipment pricing information from other projects and correlate this data by size, weight, pressure rating, and/or materials of construction. Each piece must be adjusted for inflation to bring all costs to one base time. Adjusting costs for inflation is discussed later under the heading, " Construction Cost Indexes. ... [Pg.232]

A factor of 0.6 is often used in lieu of literature or historical data, so this estimating technique is commonly referred to as the 0.6 factor method. [Pg.235]

On-line system. Provides support for exposure assessments of toxic substances. Includes chemical properly estimation techniques, siahsiical analysis, multi-media modeling, and graphics display (including models)... [Pg.293]

Yaws [124] et al. provide an estimating technique for recovery of each component in the distillate and bottoms from multicomponent distillation using short-cut equations and involving the specification of the recovery of each component in the distillate, the recovery of the heavy key component in the bottoms, and the relative volatility of the light key component. The results compare very well with plate-to-plate calculations. Figure 8-46, for a wide range of recoveries of 0.05 to 99.93% in the distillate. [Pg.69]

One of the major questions that should always be asked of any estimation technique is whether is is optimal. This problem can be addressed using Cramer-Rao bounds and we illustrate this in Section 24.4. We conclude this chapter in Section 24.5 with the application of these statistical techniques to the Shack-Hartmann and curvature sensors. [Pg.377]

Dudar, J.C., Pfeiffer, S. and Saunders, S.R. 1993 Evaluation of morphological and histological adult skeletal age-at-death estimation techniques using ribs. Journal of Forensic Sciences 38 677-685. [Pg.20]

A general method has been developed for the estimation of model parameters from experimental observations when the model relating the parameters and input variables to the output responses is a Monte Carlo simulation. The method provides point estimates as well as joint probability regions of the parameters. In comparison to methods based on analytical models, this approach can prove to be more flexible and gives the investigator a more quantitative insight into the effects of parameter values on the model. The parameter estimation technique has been applied to three examples in polymer science, all of which concern sequence distributions in polymer chains. The first is the estimation of binary reactivity ratios for the terminal or Mayo-Lewis copolymerization model from both composition and sequence distribution data. Next a procedure for discriminating between the penultimate and the terminal copolymerization models on the basis of sequence distribution data is described. Finally, the estimation of a parameter required to model the epimerization of isotactic polystyrene is discussed. [Pg.282]

In this section three applications of the parameter estimation technique to problems in polymer science involving sequence distribution data are described. These problems are of varying degrees of difficulty and each serves to point out different aspects of the method. [Pg.283]

We have presented applications of a parameter estimation technique based on Monte Carlo simulation to problems in polymer science involving sequence distribution data. In comparison to approaches involving analytic functions, Monte Carlo simulation often leads to a simpler solution of a model particularly when the process being modelled involves a prominent stochastic coit onent. [Pg.293]

Even though excellent algorithms are available for estimating nonlinear parameters, the values of exponents a, b, and e for the system under consideration rendered the estimation techniques to yield poor results. Accordingly, Equation (7) was linearized. [Pg.299]

The reaction rate constant for each elementary reaction in the mechanism must be specified, usually in Arrhenius form. Experimental rate constants are available for many of the elementary reactions, and clearly these are the most desirable. However, often such experimental rate constants will be lacking for the majority of the reactions. Standard techniques have been developed for estimating these rate constants.A fundamental input for these estimation techniques is information on the thermochemistry and geometry of reactant, product, and transition-state species. Such thermochemical information is often obtainable from electronic structure calculations, such as those discussed above. [Pg.346]

A first evaluation of the data can be done by running nonparametric statistical estimation techniques like, for example, the Nadaraya-Watson kernel regression estimate [2]. These techniques have the advantage of being relatively cost-free in terms of assumptions, but they do not provide any possibility of interpreting the outcome and are not at all reliable when extrapolating. The fact that these techniques do not require a lot of assumptions makes them... [Pg.72]

Classic parameter estimation techniques involve using experimental data to estimate all parameters at once. This allows an estimate of central tendency and a confidence interval for each parameter, but it also allows determination of a matrix of covariances between parameters. To determine parameters and confidence intervals at some level, the requirements for data increase more than proportionally with the number of parameters in the model. Above some number of parameters, simultaneous estimation becomes impractical, and the experiments required to generate the data become impossible or unethical. For models at this level of complexity parameters and covariances can be estimated for each subsection of the model. This assumes that the covariance between parameters in different subsections is zero. This is unsatisfactory to some practitioners, and this (and the complexity of such models and the difficulty and cost of building them) has been a criticism of highly parameterized PBPK and PBPD models. An alternate view assumes that decisions will be made that should be informed by as much information about the system as possible, that the assumption of zero covariance between parameters in differ-... [Pg.543]

We determined the reaction parameters using the optimal parameter estimation technique with the experimentally obtained copolymer yield and norbomene composition data. Based on the literature report, we assume that k = 3 [5]. Fig. 1 shows that the estimated rate constant values depend on the norbomene block length. Note that the reaction rate constant... [Pg.846]

Ideally, to characterize the spatial distribution of pollution, one would like to know at each location x within the site the probability distribution of the unknown concentration p(x). These distributions need to be conditional to the surrounding available information in terms of density, data configuration, and data values. Most traditional estimation techniques, including ordinary kriging, do not provide such probability distributions or "likelihood of the unknown values pC c). Utilization of these likelihood functions towards assessment of the spatial distribution of pollutants is presented first then a non-parametric method for deriving these likelihood functions is proposed. [Pg.109]

In the minds of all authors who favour the estimation of flashpoints based on a theoretical model rather than experimental results this approach was temporary and only supposed to be used during the period used by commissions of experts to lay down a standard technique for the determination of flashpoints. As has already been seen, it is less likely that this method will be used in the near future. This is the reason why we think estimation techniques have to be part of the priority tools of risk analysis in work on chemical risk prevention. Why is such work on estimation important We will see later that flashpoint is the cruciai parameter in order to establish the ievel of fire hazard of a substance. [Pg.61]

So this approach cannot be ignored, but it can only be complementary to the analysis and cannot replace the estimation technique, which will be preferred and presented and discussed below. [Pg.63]

Following are some examples of safety factors selected by choosing from the comparative table of LC50, LVE, MVE and IDLH substances, which are hardly, moderately and highly toxic. The vapour pressures of the substances come from the tables in Part Three, the estimation techniques in paragraph 1.1.2 should be applied, if need be. [Pg.135]

If basic assumptions concerning the error structure are incorrect (e.g., non-Gaussian distribution) or cannot be specified, more robust estimation techniques may be necessary. In addition to the above considerations, it is often important to introduce constraints on the estimated parameters (e.g., the parameters can only be positive). Such constraints are included in the simulation and parameter estimation package SIMUSOLV. Beeause of numerical inaccuracy, scaling of parameters and data may be necessary if the numerical values are of greatly differing order. Plots of the residuals, difference between model and measurement value, are very useful in identifying systematic or model errors. [Pg.114]

Whenever possible, experimentally determined values of physical properties should be used. If reliable values cannot be found in the literature and if time, or facilities, are not available for their determination, then in order to proceed with the design the designer must resort to estimation. Techniques are available for the prediction of most physical properties with sufficient accuracy for use in process and equipment design. A detailed review of... [Pg.313]


See other pages where Estimation Techniques is mentioned: [Pg.174]    [Pg.234]    [Pg.374]    [Pg.803]    [Pg.2276]    [Pg.2277]    [Pg.230]    [Pg.234]    [Pg.237]    [Pg.574]    [Pg.385]    [Pg.172]    [Pg.110]    [Pg.112]    [Pg.177]   


SEARCH



© 2024 chempedia.info