Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The central nervous system

The central nervous system, comprising the brain and spinal cord, is exceedingly complex and relatively poorly understood compared with the cardiovascular system. Most of the leading products have been discovered by accident rather than design. [Pg.187]


C7H9N402- M.p. 337 C, an alkaloid obtained from cacao seeds or prepared synthetically. Constitutionally it is similar to caffeine, and is also a weak base. It is usually administered as the sodium compound combined with either sodium ethanoate or sodium salicylate, and is employed almost entirely as a diuretic. Physiologically theobromine resembles caffeine, but its effect on the central nervous system is less, while its action on the kidneys, is more pronounced. [Pg.392]

Barbituric acid is the parent of a group of compounds known as barbiturates The bar biturates are classified as sedative-hypnotic agents meaning that they decrease the responsiveness of the central nervous system and promote sleep Thousands of deriva lives of the parent ring system of barbituric acid have been tested for sedative-hypnotic activity the most useful are the 5 5 disubstituted derivatives... [Pg.900]

Taste-active chemicals react with receptors on the surface of sensory cells in the papillae causing electrical depolarization, ie, drop in the voltage across the sensory cell membrane. The collection of biochemical events that are involved in this process is called transduction (15,16). Not all the chemical steps involved in transduction are known however, it is clear that different transduction mechanisms are involved in different taste quaUties different transduction mechanisms exist for the same chemical in different species (15). Thus the specificity of chemosensory processes, ie, taste and smell, to different chemicals is caused by differences in the sensory cell membrane, the transduction mechanisms, and the central nervous system (14). [Pg.10]

P-Endorphin. A peptide corresponding to the 31 C-terminal amino acids of P-LPH was first discovered in camel pituitary tissue (10). This substance is P-endorphin, which exerts a potent analgesic effect by binding to cell surface receptors in the central nervous system. The sequence of P-endorphin is well conserved across species for the first 25 N-terminal amino acids. Opiates derived from plant sources, eg, heroin, morphine, opium, etc, exert their actions by interacting with the P-endorphin receptor. On a molar basis, this peptide has approximately five times the potency of morphine. Both P-endorphin and ACTH ate cosecreted from the pituitary gland. Whereas the physiologic importance of P-endorphin release into the systemic circulation is not certain, this molecule clearly has been shown to be an important neurotransmitter within the central nervous system. Endorphin has been invaluable as a research tool, but has not been clinically useful due to the avadabihty of plant-derived opiates. [Pg.175]

Neurotensin. This hormone has been isolated and characterized from acid—acetone extracts of bovine hypothalamus (118) on the basis of its hypotensive activity. Immunoreactive neurotensin is present in mammalian gut and is distributed throughout the central nervous system its highest concentration is in the hypothalamus and in the substantia gelatinosa of the spinal cord (119). Its overall brain distribution is not unlike that of enkephalin ( ) ... [Pg.204]

Pneumogstis carini pneumonia (PCP), the most common of the opportunistic infections, occurs in more than 80% of AIDS patients (13). Toxoplasmosis, a proto2oan infection of the central nervous system, is activated in AIDS patients when the 004 count drops and severe impairment of ceU-mediated immunity occurs. Typically, patients have a mass lesion(s) in the brain. These mass lesions usually respond well to therapy and can disappear completely. Fungal infections, such as CTyptococcalmeningitis, are extremely common in AIDS patients, and Histop/asma capsulatum appears when ceU-mediated immunity has been destroyed by the HIV vims, leading to widespread infection of the lungs, Hver, spleen, lymph nodes, and bone marrow. AIDS patients are particularly susceptible to bacteremia caused by nontyphoidal strains of Salmonella. Bacteremia may be cleared by using antibiotic therapy. [Pg.33]

The toxicity of 2,4-pentanedione is shown in Tables 3 and 11 to be similar to mesityl oxide, and greater than most other 1,2- or 1,4-diketones or monoketones. Inhalation of low levels of 2,4-pentanedione can cause nausea, eye contact can induce stinging, and recurrent exposure to high concentrations (300—400 ppm) can adversely affect the central nervous system and immune system (325). [Pg.499]

Alkyl mercury compounds in the blood stream are found mainly in the blood cehs, and only to a smah extent in the plasma. This is probably the result of the greater stabhity of the alkyl mercuric compounds, as well as their pecuflar solubiUty characteristics. Alkyl mercury compounds affect the central nervous system and accumulate in the brain (17,18). Elimination of alkyl mercury compounds from the body is somewhat slower than that of inorganic mercury compounds and the aryl and alkoxy mercurials. Methylmercury is eliminated from humans at a rate indicating a half-life of 50—60 d (19) inorganic mercurials leave the body according to a half-life pattern of 30—60 d (20). Elimination rates are dependent not only on the nature of the compound but also on the dosage, method of intake, and the rate of intake (21,22). [Pg.116]

Metabolic Functions. Manganese is essential for normal body stmcture, reproduction, normal functioning of the central nervous system, and activation of numerous enzymes (126). Synthesis of the mucopolysaccharide chondroitin sulfate involves a series of reactions where manganese is required in at least five steps (127). These reactions are responsible for formation of polysaccharides and linkage between the polysaccharide and proteins that form... [Pg.386]

Dmg receptors represent another type of receptor family. The central nervous system (CNS) effects of the anxiolytic, diazepam, and the psychotropic actions of the caimabiaoids and phencycUdine have resulted ia the identification of specific receptors for these molecules. This has resulted ia the search for an endogenous ligand for these receptors. Thus, ia these situations, the pharmacological action has preceded the discovery of the receptor which, ia turn, has provided clues ia several iastances to the endogenous ligand. [Pg.518]

Long-lasting vasoconstriction is produced by the ETs in almost all arteries and veins and several studies have shown that ET-1 causes a reduction in renal blood flow and urinary sodium excretion. ET-1 has been reported to be a potent mitogen in fibroblasts and aortic smooth muscle cells and to cause contraction of rat stomach strips, rat colon and guinea pig ileum. In the central nervous system, ETs have been shown to modulate neurotransmitter release. [Pg.544]

Neuropeptide Y. Neuropeptide Y [82785 5-3] (NPY) (255) is a 36-amiao acid peptide that is a member of a peptide family including peptide YY (PYY) [81858-94-8, 106338-42-5] (256) and pancreatic polypeptide (PPY) [59763-91-6] (257). In the periphery, NPY is present in most sympathetic nerve fibers, particulady around blood vessels and also in noradrenergic perivascular and selected parasympathetic nerves (66). Neurons containing NPY-like immunoreactivity ate abundant in the central nervous system, particulady in limbic stmctures. Coexistence with somatostatin and NADPH-diaphorase, an enzyme associated with NO synthesis, is common in the cortex and striatum. [Pg.563]

In addition to the weU-defined opioid systems in the central nervous system, the three opioid peptides and their precursor mRNA have also been identified in peripheral tissues. ( -Endorphin is most abundant in the pituitary, where it exists in corticotroph cells with ACTH in the anterior lobe and in melanotroph cells with MSH in the intermediate lobe (59). Enkephalin and pre-pro-enkephalin mRNA have been identified in the adrenal medulla (60) and this has been the source of material for many studies of pro-enkephalin synthesis and regulation. Pre-pro-enkephalin mRNA has also been identified in the anterior and posterior lobes of the pituitary (61). mRNA for all three opioid precursors has been identified in the reproductive system (62—64). POMC... [Pg.446]

Phenol. Phenol monomer is highly toxic and absorption by the skin can cause severe blistering. Large quantities can cause paralysis of the central nervous system and death. Ingestion of minor amounts may damage kidneys, Hver, and pancreas. Inhalation can cause headaches, dizziness, vomiting, and heart failure. The threshold limit value (TLV) for phenol is 5 ppm. The health and environmental risks of phenol and alkylated phenols, such as cresols and butylphenols, have been reviewed (66). [Pg.302]

Propylene oxide is a primary irritant, a mild protoplasmic poison, and a mild depressant of the central nervous system. Skin contact, even in dilute solution (1%), may cause irritation to the eyes, respiratory tract, and lungs. Propylene oxide is a suspected carcinogen in animals. The LC q (lowest lethal concentration by inhalation in tats) is 4000 mg/kg body weight. The LD q (oral) is 930 mg/kg. The LD q (dermal) is 1500 mg/kg. The TWA (8-h exposure) is 100 ppm and the STEP (15-min exposure) is 150 ppm. [Pg.355]

Many patents have been issued on the use of pyrogaUol derivatives as pharmaceuticals. PyrogaUol has been used extemaUy in the form of an ointment or a solution in the treatment of skin diseases, eg, psoriasis, ringworm, and lupus erythematosus. GaUamine triethiodide (16) is an important muscle relaxant in surgery it also is used in convulsive-shock therapy. Trimethoprim (2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine) is an antimicrobial and is a component of Bactrin and Septra. Trimetazidine (l(2,3,4-trimethoxybenzyl)piperazine (Vastarel, Yosimilon) is used as a coronary vasodilator. l,2,3,4-Tetrahydro-6-methoxy-l-(3,4,5-trimethoxyphenyl)-9JT-pyrido[3,4- ]indole hydrochloride is useful as a tranquilizer (52) (see Hypnotics, sedatives, ANTICONVULSANTS, AND ANXIOLYTICS). Substituted indanones made from pyrogaUol trimethyl ether depress the central nervous system (CNS) (53). Tyrosine-and glycine(2,3,4-trihydroxybenzyl)hydrazides are characterized by antidepressant and anti-Parkinson activity (54). [Pg.378]

General types of physiological functions attributed to quaternary ammonium compounds are curare action, muscarinic—nicotinic action, and ganglia blocking action. The active substance of curare is a quaternary that can produce muscular paralysis without affecting the central nervous system or the heart. Muscarinic action is the stimulation of smooth-muscle tissue. Nicotinic action is primary transient stimulation and secondary persistent depression of sympathetic and parasympathetic ganglia. [Pg.378]

Health and Safety Factors. Carbonyl sulfide is dangerously poisonous, more so because it is practically odorless when pure. It is lethal to rats at 2900 ppm. Studies show an LD q (rat, ip) of 22.5 mg/kg. The mechanism of toxic action appears to iavolve breakdowa to hydrogea sulfide (36). It acts principally on the central nervous system with death resulting mainly from respiratory paralysis. Little is known regarding the health effects of subacute or chronic exposure to carbonyl sulfide a 400-p.g/m max level has been suggested until more data are available (37). Carbon oxysulfide has a reported inhalation toxicity in mice LD q (mouse) = 2900 ppm (37). [Pg.130]


See other pages where The central nervous system is mentioned: [Pg.545]    [Pg.137]    [Pg.175]    [Pg.200]    [Pg.203]    [Pg.203]    [Pg.530]    [Pg.33]    [Pg.78]    [Pg.498]    [Pg.93]    [Pg.108]    [Pg.539]    [Pg.66]    [Pg.451]    [Pg.482]    [Pg.482]    [Pg.95]    [Pg.375]    [Pg.380]    [Pg.385]    [Pg.407]    [Pg.443]    [Pg.444]    [Pg.456]    [Pg.511]    [Pg.113]    [Pg.218]    [Pg.221]    [Pg.237]    [Pg.467]    [Pg.461]    [Pg.465]   


SEARCH



Acting on the Central Nervous System (CNS)

Biochemical Toxicology of the Central Nervous System

Diseases of the central nervous system

Distribution in the central nervous system

Dopamine, a neurotransmitter in the central nervous system

Effects in the central nervous system

Effects on the Central Nervous System

Electrical Stimulation of the Central Nervous System Warren M. Grill

Enzyme inhibition in the central nervous system

Homeostasis, in the central nervous system

Injections, into the central nervous system

Iron Metabolism in the Central Nervous System

Nervous system, the

Neurochemical Acclimatization to Hypoxia in the Central Nervous System

Organization of the Central Nervous System

Pharmacological Interactions Between Antiretrovirals and Other Medications with Activity in the Central Nervous System

Polymers for Regeneration in the Central Nervous Systems

Polymers in the Central Nervous System Past, Present and Future

Processing in the Central Nervous System

Taurine in the Central Nervous System

Therapy of the Central Nervous System

Toxicity to the Central Nervous System

© 2024 chempedia.info