Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

System preparation

The remainder of this chapter focuses on practical aspects of the preparation and implementation of atomistically based computations of nucleic acids. A flow diagram of the steps involved in system preparation and the performance of MD studies of nucleic acids is presented in Figure 1. Additional details on many of the procedures described here may be found in books by Allen and Tildesly [123] and Frenkel and Smit [124]. [Pg.452]

When the simulation is initiated it is important to closely monitor both structural and energetic properties to ensure that significant perturbations of the solute do not initially occur due to the applied methodology. If such perturbations are present, the system preparation and equilibration approach should be evaluated for potential problems. [Pg.456]

Hazardous waste data management and reporting system Prepares hazardous waste manifests. Requires 10 Meg hard disk and 132 column printer. [Pg.295]

Finally, the 1,3-dione systems prepared by Cram and Alberts deserve special note . These compounds, referred to as hexahosts are similar to the polymer-bound material illustrated as Compound 29 in Chap. 6. The synthesis is based on a methylene-bridged bis-dithiane unit. One of these may be cyclized with a polyethylene glycol, or more than one unit may be incorporated to give multiple 1,3-dione binding sites in the macrocycle. The former case is illustrated in Eq. (3.46). [Pg.44]

In addition, several oj-hydroxyacids have been prepared. The systems prepared by Yamazaki (8) have been evaluated for ion transport action. Those prepared at Upjohn have been reported to have Ca activity comparable to the natural antibiotic X-537A (9) and to be more active than crown ethers. The most active of their structures is shown as 10. [Pg.319]

Low-foaming liquid or powdered machine detergents are described using a surfactant system prepared from naturally based raw materials with good biodegradability and detergent properties [135]. These formulations are based on 5-30% alkylpolyglucoside, 5-30% alkyl ether carboxylate, 5-35% soap, and 0-3% of another surfactant. [Pg.340]

The composition of a typical IOS system prepared by Stapersma et al. [4] is shown in Table 2, along with the analytical data of an AOS with the same chain length. Compositions containing IOS, a nonionic surfactant, glycols, and another salt-tolerant anionic surfactant which are pourable and pumpable at 20°C and can be used in the manufacturing of detergent compositions, have also been described by Stapersma et al. [36]. [Pg.370]

Susac et al. [33] showed that the cobalt-selenium (Co-Se) system prepared by sputtering and chemical methods was catalytically active toward the ORR in an acidic medium. Lee et al. [34] synthesized ternary non-noble selenides based on W and Co by the reaction of the metal carbonyls and elemental Se in xylenes. These W-Co-Se systems showed catalytic activity toward ORR in acidic media, albeit lower than with Pt/C and seemingly proceeding as a two-electron process. It was pointed out that non-noble metals too can serve as active sites for catalysis, in fact generating sufficient activity to be comparable to that of a noble metal, provided that electronic effects have been induced by the chalcogen modification. [Pg.317]

In the previous Sections (2.1-2.3) we summarized the experimental and computational results concerning on the size-dependent electronic structure of nanoparticles supported by more or less inert (carbon or oxide) and strongly interacting (metallic) substrates. In the following sections the (usually qualitative) models will be discussed in detail, which were developed to interpret the observed data. The emphasis will be placed on systems prepared on inert supports, since - as it was described in Section 2.3 - the behavior of metal adatoms or adlayers on metallic substrates can be understood in terms of charge transfer processes. [Pg.88]

Lussier [71] has given an overview of Uniroyal Chemical s approach to the analysis of compounded elastomers (Scheme 2.2). Uncured compounds are first extracted with ethanol to remove oils for subsequent analysis, whereas cured compounds are best extracted with ETA (ethanol/toluene azeotrope). Uncured compounds are then dissolved in a low-boiling solvent (chloroform, toluene), and filler and CB are removed by filtration. When the compound is cured, extended treatment in o-dichlorobenzene (ODCB) (b.p. 180 °C) will usually suffice to dissolve enough polymer to allow its separation from filler and CB via hot filtration. Polymer identification was based on IR spectroscopy (key role), CB analysis followed ASTM D 297, filler analysis (after direct ashing at 550-600 °C in air) by means of IR, AAS and XRD. Antioxidant analysis proceeded by IR examination of the nonpolymer ethanol or ETA organic extracts. For unknown AO systems (preparative) TLC was used with IR, NMR or MS identification. Alternatively GC-MS was applied directly to the preparative TLC eluent. [Pg.36]

A reported application of canonical analysis involved a novel combination of the canonical form of the regression equation with a computer-aided grid search technique to optimize controlled drug release from a pellet system prepared by extrusion and spheronization [28,29]. Formulation factors were used as independent variables, and in vitro dissolution was the main response, or dependent variable. Both a minimum and a maximum drug release rate was predicted and verified by preparation and testing of the predicted formulations. Excellent agreement between the predicted values and the actual values was evident for the four-component pellet system in this study. [Pg.620]

Internal standard solution, Standard preparation, and Chromatographic system Prepare as directed in the Assay under Miconazole nitrate cream. [Pg.37]

RhCl(NH3)5]Cl2 exchanged with NaX form a highly active catalyst (RhA) for MeOH carbonylation when used with an organic iodide promoter. Systems prepared from RhCl3 are far less active. EXAFS spectroscopy from the Rh K-edge was used to follow the fate of the Rh... [Pg.146]

Other heterocyclic systems prepared by a thionyl chloride reaction include fused thiazoles,71 thiatriazoles,72 oxathiins,73 and dithiins 74 some further examples are given in reviews.53... [Pg.66]

Another setup used for the hydrogenation of DMI with Ru-BINAP was equipped with dense PDMS elastomer membranes (Jacobs et al. [48]). The catalyst solution was present in a submerged membrane system, prepared as a sealed PDMS capsule . The catalytically active complex was retained by the membrane while substrate and products, dissolved in the bulk phase, could cross the membrane under the influence of the concentration difference without the need for mechanical pressure. [Pg.95]

In addition to the polymeric rhodium catalysts previously discussed, monomeric rhodium systems prepared from [Rh(CO)2Cl]2 by addition of strong acid (HC1 or HBF4) and Nal in glacial acetic acid have also been shown to be active homogeneous shift catalysts (80). The active species is thought to be an anionic iodorhodium carbonyl species, dihydrogen being produced by the reduction of protons with concomitant oxidation of Rh(I) to Rh(III) [Eq. (18)], and carbon dioxide by nucleophilic attack of water on a Rh(III)-coordinated carbonyl [Eq. (19)]. [Pg.85]

A report in 1977 (3) of an active system prepared from [Rh(CO)2CI]2, CH3CO2H, cone. HC1 and Nal in water demonstrated that a basic medium is not a necessary condition for WGSR catalysis. This result stimulated us to examine the potential activity of several simple metal carbonyls in acidic solution as well. Attempts with Fe(CO)5 and Iri (CO)12 (17), both active in alkaline and amine solutions, proved unfruitful. However Ru3(CO)12 in acidic (0.5 N H2SOtf) aqueous ethoxyethanol gave WGSR activity substantilly larger than found in basic solutions under otherwise analogous conditions (Pco=0.9 atm, T=100°C, [Ru]Total=0 036 mol/L) (15). This solution proved unstable and... [Pg.101]

Asymmetric hydrogenation of nitrones in an iridium catalyst system, prepared from [IrCl(cod)]2, (S)-BINAP, NBu 4 BH4, gives with high enantioselectivity the corresponding A-hydroxylamines which are important biologically active compounds and precursors of amines (480). Further reduction of hydroxylamines to secondary amines or imines can be realized upon treatment with Fe/AcOH (479), or anhydrous titanium trichloride in tetrahydrofuran (THF) at room temperature (481). [Pg.213]

What is the structure of this Co-Mo-S phase A model system, prepared by impregnating a MoS2 crystal with a dilute solution of cobalt ions, such that the model contains ppms of cobalt only, appears to have the same Mossbauer spectrum as the Co-Mo-S phase. It has the same isomer shift (characteristic of the oxidation state), recoilfree fraction (characteristic of lattice vibrations) and almost the same quadrupole splitting (characteristic of symmetry) at all temperatures between 4 and 600 K [71]. Thus, the cobalt species in the ppm Co/MoS2 system provides a convenient model for the active site in a Co-Mo hydrodesulfurization catalyst. [Pg.274]

Au/Ti02 systems prepared by deposition-precipitation method. Therefore, it is probable that a more relevant effect is the presence of some residual alkali on the surface due to the preparation method for these Titania nanotubes. [Pg.380]

Polymeric vesicles could be of better use for such an antitumor therapy on a cellular level, since they have at least one of the properties required, namely an extraordinary membrane stability. For a successful application, however, the simple systems prepared so far must be varied to a great extent, because the stability of a model cell membrane is not the only condition to be fulfilled. Besides stability and possibilities for cell recognition as discussed above the presence of cell membrane destructing substances such as lysophospholipids is necessary. These could e.g. be incorporated into the membrane of stabilized liposomes without destruction of the polymeric vesicles. There have already been reports about thekilling of tumor cells by synthetic alkyl lysophospholipids (72). [Pg.227]

To prepare more hydrophobic starches for specific applications, the partial substitution of starch with acetate, hydroxypropyl, alkylsiliconate or fatty-acid ester groups has been described in the literature. A new route, however, consists of grafting octadienyl chains by butadiene telomerization (Scheme 3.9) [79, 82, 83], The reaction was catalyzed by hydrosoluble palladium-catalytic systems prepared from palladium diacetate and trisodium tris(m-sulfonatophenyl)phosphine (TPPTS). [Pg.70]

Chapter 7 (Section D) lists some ring systems prepared by the thermal cyclization of dialkyl aminomethylenemalonates. [Pg.141]

The next four procedures describe the preparation of strained ring systems. Preparation of 3-CHLORO-2-(CHLOROMETHYL)-l-PROPENE provides a facile approach to the olefin required for the synthesis of [1.1.1 [PROPELLANE, one of the most strained hydrocarbons prepared to date. The ready availability of this hydrocarbon should prove particularly useful to those interested in the development of the chemistry of this fascinating compound. Preparation of N-BENZYL-2,3-AZETIDINEDIONE provides an efficient approach to the unadorned a-keto-/3-lactam, a potential... [Pg.139]

Perez, Jr., A. and Johnston, J. A., Performance and processing enhancements of aromatic polyurea elastomer systems prepared from high 2,4 -MDI isocyanates, presented at Polyurethanes... [Pg.157]


See other pages where System preparation is mentioned: [Pg.449]    [Pg.456]    [Pg.911]    [Pg.154]    [Pg.117]    [Pg.119]    [Pg.442]    [Pg.152]    [Pg.199]    [Pg.57]    [Pg.259]    [Pg.549]    [Pg.148]    [Pg.87]    [Pg.72]    [Pg.102]    [Pg.384]    [Pg.311]    [Pg.313]    [Pg.160]    [Pg.296]    [Pg.69]    [Pg.104]    [Pg.249]   
See also in sourсe #XX -- [ Pg.852 ]




SEARCH



3D-three dimensional dynamic image analysis system sample preparation

Acid-base buffer systems preparing

Assay systems preparations

Atomic systems preparation

Automated preparative HPLC system

Bonding systems metal preparation

Catalyst preparation systems

Chromatographic systems sample preparation

Colloidal systems preparation

Colloidal systems surface preparation

Control systems starting preparations

Corticosteroid therapy systemic preparations

Emulsion Preparation with Microstructured Systems

Essential Components of a Preparative GC System

Furan ring system preparation

Furanoid systems, preparation

High-performance liquid chromatography system, automated preparative

How to prepare colloid systems

Hybrid dispersion system Preparation

Injection systems preparative techniques

LEARNINGEXPRESS TEST PREPARATION SYSTEM

Nasal preparations systemic absorption

Nasal preparations systemic action

Pharmacy preparation quality system

Phase system preparation

Preparation and Properties of Strained Medium-ring Systems

Preparation and Storage of Solvent Systems

Preparation and purification of colloidal systems

Preparation of Complex Self-Sorting Systems

Preparation of Composite Specimen from Prepreg Systems

Preparation of Filled Polymer Systems

Preparation of Some Simple Colloidal Systems

Preparation of aromatic systems

Preparation of the Isomeric Thienothiophenes and Related Systems

Preparation ternary system

Preparation-vacuum system

Preparative, solvent-delivery system

Preparative-scale Kinetic Resolution Using Aldolase Antibodies in a Biphasic Aqueous-Organic Solvent System

Preparing a Brine Sludge Dissolving System for Maintenance

Preparing power compensation systems for use

Robotic systems preparation

Solvent delivery systems preparative scale

System development steps prepare desired phase

System hazard analysis preparing

System safety program plan preparing

Systems for Fiber Stock Preparation

The LearningExpress Test Preparation System

Three-membered ring systems preparation

Titanium catalytic systems, study preparation

Topical systems preparation

© 2024 chempedia.info