Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives in Detail

Adding low-density materials reduces the density of a cement composition. These additives are referred to as extenders, because they reduce the demand of [Pg.135]

Permeability control Silica flour, gas bubble-producing additives  [Pg.136]

Corrosion control Various nitrogen compounds, polyoxylated amines,  [Pg.136]

Radioactive traces Helpful in finding the region of actual placement  [Pg.136]

Furnace slag cement High service temperatures [1128] [Pg.136]


Introduction Since we had already developed the novel asymmetric addition of lithium acetylide to ketimine 5, we did not spend any time on investigating any chiral resolution methods for Efavirenz . Our previous method was applied to 41. In the presence of the lithium alkoxide of cinchona alkaloids, the reaction proceeded to afford the desired alcohol 45, as expected, but the enantiomeric excess of 45 was only in the range 50-60%. After screening various readily accessible chiral amino alcohols, it was found that a derivative of ephedrine, (1J ,2S) l-phenyl-2-(l-pyrrolidinyl)propan-l-ol (46), provided the best enantiomeric excess of 45 (as high as 98%) with an excellent yield (vide infra). Prior to the development of asymmetric addition in detail, we had to prepare two additional reagents, the chiral modifier 46 and cyclopropylacetylene (37). [Pg.23]

This book reviews one extensive group of substances, flavourings (Chapter 9), that is being brought into international controls on additives. It also considers three major groups of widely-controlled additives in detail artificial sweeteners (Chapter 10), substances used as colourings (Chapter 8), and antioxidants (Chapter 12). A more general review of the other additives and how they are controlled is presented in Chapter 11. [Pg.3]

The procedure for the dehydrohalogenation is similar to that for HCsCCH(OC2H5)2 described in exp. 11. The modest yield (-52%) of ethynylpyridine is explained by the fact that the addition of bromine to 2-vinylpvridine is not a clean reaction We have not investigated this addition in detail but it is possible that at very low temperatures bromine first farms a complex =N+Br—Br2 instead of adding across the (electron-poor) double bond. When in the beginning bromine is added at - -70 C to the solution of vinylpyridine in Et20 or dichloro-... [Pg.177]

This book mainly focuses on plastics waste, though plastic materials, additives and processing are dealt with to some extent thermosetting materials are also briefly covered. It would be impossible, in a volume of this size, to cover all the plastics and additives in detail. [Pg.175]

An additional separator is now required (Fig. 4.2a). Again, the unreacted FEED is normally recycled, but the BYPRODUCT must be removed to maintain the overall material balance. An additional complication now arises with two separators because the separation sequence can be changed (see Fig. 4.26). We shall consider separation sequencing in detail in the next chapter. [Pg.96]

In 1930, London [1,2] showed the existence of an additional type of electromagnetic force between atoms having the required characteristics. This is known as the dispersion or London-van der Waals force. It is always attractive and arises from the fluctuating electron clouds in all atoms that appear as oscillating dipoles created by the positive nucleus and negative electrons. The derivation is described in detail in several books [1,3] and we will outline it briefly here. [Pg.228]

When either hydrogen ions or hydroxide ions participate in a redox half-reaction, then clearly the redox potential is alTected by change of pH. Manganate(Vir) ions are usually used in well-acidified solution, where (as we shall see in detail later) they oxidise chlorine ions. If the pH is increased to make the solution only mildly acidic (pH = 3-6), the redox potential changes from 1.52 V to about 1.1 V, and chloride is not oxidised. This fact is of practical use in a mixture of iodide and chloride ions in mildly acid solution. manganate(VII) oxidises only iodide addition of acid causes oxidation of chloride to proceed. [Pg.102]

We further note that the Langevin equation (which will not be discussed in detail here) is an intermediate between the Newton s equations and the Brownian dynamics. It includes in addition to an inertial part also a friction and a random force term ... [Pg.265]

Using Jacobi coordinates and reduced masses, the Hydrogen-Chlorine interaction is modeled quantum mechanically whereas the Ar-HCl interaction classically. The potentials used, initial data and additional computational parameters are listed in detail in [16]. [Pg.406]

First, considerably greater emphasis has been placed on semimicro techniques and their application to preparations, separations, analysis and physical determinations such as those of molecular weight. We have therefore greatly expanded the section on Manipulation on a semi-micro scale which was in the Third Edition, and we have described many more preparations on this scale, some independent and others as alternatives to the larger-scale preparations which immediately precede them. Some 40 separate preparations on the semi-micro scale are described in detail, in addition to specific directions for the preparation of many classes of crystalline derivatives required for identification purposes. The equipment required for these small-scale reactions has been selected on a realistic basis, and care has been taken not to include the very curious pieces of apparatus sometimes suggested as necessary for working on the semi-micro scale. [Pg.585]

At one time, computational chemistry techniques were used only by experts extremely experienced in using tools that were for the most part difficult to understand and apply. Today, advances in software have produced programs that are easily used by any chemist. Along with new software comes new literature on the subject. There are now books that describe the fundamental principles of computational chemistry at almost any level of detail. A number of books also exist that explain how to apply computational chemistry techniques to simple calculations appropriate for student assignments. There are, in addition, many detailed research papers on advanced topics that are intended to be read only by professional theorists. [Pg.396]

Although equations 5.13 and 5.14 appear formidable, it is only necessary to evaluate four summation terms. In addition, many calculators, spreadsheets, and other computer software packages are capable of performing a linear regression analysis based on this model. To save time and to avoid tedious calculations, learn how to use one of these tools. For illustrative purposes, the necessary calculations are shown in detail in the following example. [Pg.119]

In the last section we examined some of the categories into which polymers can be classified. Various aspects of molecular structure were used as the basis for classification in that section. Next we shall consider the chemical reactions that produce the molecules as a basis for classification. The objective of this discussion is simply to provide some orientation and to introduce some typical polymers. For this purpose a number of polymers may be classified as either addition or condensation polymers. Each of these classes of polymers are discussed in detail in Part II of this book, specifically Chaps. 5 and 6 for condensation and addition, respectively. Even though these categories are based on the reactions which produce the polymers, it should not be inferred that only two types of polymerization reactions exist. We have to start somewhere, and these two important categories are the usual place to begin. [Pg.13]

We shall take up the kinetics of crystallization in detail in Secs. 4.5 and 4.6. For the present, our only interest is in examining what role kinetic factors play in complicating the crystal-liquid transition. In brief, the story goes like this. Polymers have a great propensity to supercool. If and when they do crystallize, it is an experimental fact that smaller crystal dimensions are obtained the lower the temperature at which the crystallization is carried out. The following considerations supply some additional details ... [Pg.205]

In this section we resume our examination of the equivalency of time and temperature in the determination of the mechanical properties of polymers. In the last chapter we had several occasions to mention this equivalency, but never developed it in detail. In examining this, we shall not only acquire some practical knowledge for the collection and representation of experimental data, but also shall gain additional insight into the free-volume aspect of the glass transition. [Pg.256]

In the next section we shall examine the mixing process for molecules which differ greatly in size, building on the principles reviewed in this section. The reader who desires additional review of these ideas will find this material discussed in detail in textbooks of physical chemistry. [Pg.513]

Polymerization Reactions. Polymerization addition reactions are commercially the most important class of reactions for the propylene molecule and are covered in detail elsewhere (see Olefin polymers, polypropylene). Many types of gas- or liquid-phase catalysts are used for this purpose. Most recently, metallocene catalysts have been commercially employed. These latter catalysts requite higher levels of propylene purity. [Pg.124]

The mechanism of both syntheses has been studied in detail, and well summarized (44,45). Interesting questions remain for example, in neither of these sequences is it certain whether the carbonyl compound or its Schiff base is undergoing Michael addition. [Pg.391]

Crystalline Silica. Sihca exists in a variety of polymorphic crystalline forms (23,41—43), in amorphous modifications, and as a Hquid. The Hterature on crystalline modifications is to some degree controversial. According to the conventional view of the polymorphism of siHca, there are three main forms at atmospheric pressure quart2, stable below about 870°C tridymite, stable from about 870—1470°C and cristobaHte, stable from about 1470°C to the melting point at about 1723°C. In all of these forms, the stmctures are based on SiO tetrahedra linked in such a way that every oxygen atom is shared between two siHcon atoms. The stmctures, however, are quite different in detail. In addition, there are other forms of siHca that are not stable at atmospheric pressure, including that of stishovite, in which the coordination number of siHcon is six rather than four. [Pg.472]

Accepted by the PDA as an indirect food additive in April 1990. Tide 21 of the Code of Pederal Regulations provides details. [Pg.232]

Because of the expanded scale and need to describe additional physical and chemical processes, the development of acid deposition and regional oxidant models has lagged behind that of urban-scale photochemical models. An additional step up in scale and complexity, the development of analytical models of pollutant dynamics in the stratosphere is also behind that of ground-level oxidant models, in part because of the central role of heterogeneous chemistry in the stratospheric ozone depletion problem. In general, atmospheric Hquid-phase chemistry and especially heterogeneous chemistry are less well understood than gas-phase reactions such as those that dorninate the formation of ozone in urban areas. Development of three-dimensional models that treat both the dynamics and chemistry of the stratosphere in detail is an ongoing research problem. [Pg.387]

The principal chemical uses of BTX are illustrated in Figure 1 and Hsted in Table 1 (2). A very wide range of consumer products from solvents to fibers, films, and plastics are based on BTX. The consumption of BTX is approximately in the proportions of 67 5 28, respectively. However, no BTX process gives BTX in these proportions. The economic value of benzene and xylenes (especially -xylene) is normally higher than that of toluene. Because of this, processes that convert toluene to benzene by hydrodealkylation (3) and disproportionate toluene to benzene and xylenes (4) have been commercialized. In addition, reforming processes that emphasize production of either benzene or -xylene [106 2-3] have been described (5). Since these are not classified as BTX processes they are not discussed in detail here. [Pg.306]


See other pages where Additives in Detail is mentioned: [Pg.135]    [Pg.67]    [Pg.502]    [Pg.98]    [Pg.25]    [Pg.135]    [Pg.67]    [Pg.502]    [Pg.98]    [Pg.25]    [Pg.497]    [Pg.385]    [Pg.1112]    [Pg.320]    [Pg.241]    [Pg.109]    [Pg.427]    [Pg.256]    [Pg.198]    [Pg.248]    [Pg.200]    [Pg.73]    [Pg.23]    [Pg.123]    [Pg.457]    [Pg.325]    [Pg.349]    [Pg.363]    [Pg.440]    [Pg.99]   


SEARCH



© 2024 chempedia.info