Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fillers, analysis

Lussier [71] has given an overview of Uniroyal Chemical s approach to the analysis of compounded elastomers (Scheme 2.2). Uncured compounds are first extracted with ethanol to remove oils for subsequent analysis, whereas cured compounds are best extracted with ETA (ethanol/toluene azeotrope). Uncured compounds are then dissolved in a low-boiling solvent (chloroform, toluene), and filler and CB are removed by filtration. When the compound is cured, extended treatment in o-dichlorobenzene (ODCB) (b.p. 180 °C) will usually suffice to dissolve enough polymer to allow its separation from filler and CB via hot filtration. Polymer identification was based on IR spectroscopy (key role), CB analysis followed ASTM D 297, filler analysis (after direct ashing at 550-600 °C in air) by means of IR, AAS and XRD. Antioxidant analysis proceeded by IR examination of the nonpolymer ethanol or ETA organic extracts. For unknown AO systems (preparative) TLC was used with IR, NMR or MS identification. Alternatively GC-MS was applied directly to the preparative TLC eluent. [Pg.36]

There are other tests for polymers that are not included in this review including some density, filler analysis techniques and other physical tests. For convenience, a listing of ASTM and ISO standards for the major test in this work is provided in the references. [Pg.8301]

Thermal Analyses. Thermal analysis often complements x-ray data in providing information on phase composition. The thermal behavior of aluminum hydroxides is particularly important in filler type appHcations. [Pg.172]

Sedimentation analysis is suitable for a wide variety of materials and is used for both quaHty control and research work, such as agglomeration studies (56), and gives well-defined, relatively high resolution results. The technique has been employed in the evaluation of soils, sediments, pigments, fillers, phosphors, clays (qv), minerals, photographic haHdes, and organic particles (57,58). [Pg.132]

The filler metal is analyzed for those specific elements for which values are shown. If the presence of other elements is indicated in the analysis, the amount of those elements is deterrnined to ensure that the maximum for each is <0.05 wt% and the maximum total of other elements is <0.15 wt%. Remainder of material is Al. [Pg.244]

Shock isolation is also possible usiag the dampiag characteristics of FZ elastomer. Dynamic mechanical analysis iadicates multiple transitions and a broad dampiag peak. This dampiag can be enhanced usiag formulatioas containing both siUca and carbon black fillers. [Pg.528]

In dispersed systems the nature of the filler also plays a controlling role in the way the crystallization proceeds. Examples are reported in [105], whose authors have used X-ray analysis to estimate the degree of crystallinity of polyisobutylene filled with different concentrations of a number of filler materials, after 100 cycles of 50% stretching. Polyisobutylene crystallizes as a result of such treatment. The results are given in Table 1. [Pg.12]

The table data show that the stress/strain properties of compositions are improved by additional dispersion (mixing). Ultrasonic analysis is sufficiently reliable and informative as a means of mixing quality assessment. The very small change of the characteristics for filled compositions (chalk + kaolin) can be due to the fact that these fillers are readily distributed in the matrix as they are. [Pg.30]

In a series of reviews [244-246] the models proposed for the assessment of the effect of fillers on the complex of PCM properties are discussed. Analysis of the models shows that, for a fixed filler content, the strength must be higher in compositions with fillers featuring the absolute adhesion to the matrix than in systems with little or no adhesion. The relative elongation and specific impact strength must, on the contrary, go up with the increasing adhesion. [Pg.35]

The fact that the appearance of a wall slip at sufficiently high shear rates is a property inwardly inherent in filled polymers or an external manifestation of these properties may be discussed, but obviously, the role of this effect during the flow of compositions with a disperse filler is great. The wall slip, beginning in the region of high shear rates, was marked many times as the effect that must be taken into account in the analysis of rheological properties of filled polymer melts [24, 25], and the appearance of a slip is initiated in the entry (transitional) zone of the channel [26]. It is quite possible that in reality not a true wall slip takes place, but the formation of a low-viscosity wall layer depleted of a filler. This is most characteristic for the systems with low-viscosity binders. From the point of view of hydrodynamics, an exact mechanism of motion of a material near the wall is immaterial, since in any case it appears as a wall slip. [Pg.87]

The composites with the conducting fibers may also be considered as the structurized systems in their way. The fiber with diameter d and length 1 may be imagined as a chain of contacting spheres with diameter d and chain length 1. Thus, comparing the composites with dispersed and fiber fillers, we may say that N = 1/d particles of the dispersed filler are as if combined in a chain. From this qualitative analysis it follows that the lower the percolation threshold for the fiber composites the larger must be the value of 1/d. This conclusion is confirmed both by the calculations for model systems [27] and by the experimental data [8, 15]. So, for 1/d 103 the value of the threshold concentration can be reduced to between 0.1 and 0.3 per cent of the volume. [Pg.130]

The analysis of the distribution curves of the fiber filler length after compression permits one to conclude that a variation of the fiber average length at compression may be approximately considered as a function of the value of applied pressure irrespective of the composition of the mixture and the state of the polymer [47]. In this case, it should be taken into consideration that longer fibers are destroyed more easily. This is bound up with destruction due to bending at the fiber contact points, the number of which depends directly on the fiber length. [Pg.138]

Such a model makes it possible to calculate a change of fibers distribution along the length in the boundary layer. At present, practically the sole approach to the analysis of destruction when the fiber filler flows in the basic mass, outside the boundary layer, is an experimental determination of destruction kinetics for a given pair — fiber filler and polymer. Such dependencies can be obtained with the help of, say, rotary viscosimeters [47],... [Pg.139]

Based on this analysis it is evident that materials which are biaxially oriented will have good puncture resistance. Highly polar polymers would be resistant to puncture failure because of their tendency to increase in strength when stretched. The addition of randomly dispersed fibrous filler will also add resistance to puncture loads. From some examples such as oriented polyethylene glycol terephthalate (Mylar), vulcanized fiber, and oriented nylon, it is evident that these materials meet one or more of the conditions reviewed. Products and plastics that meet with puncture loading conditions in applications can be reinforced against this type of stress by use of a surface layer of plastic with good puncture resistance. Resistance of the surface layer to puncture will protect the product from puncture loads. An example of this type of application is the addition of an oriented PS layer to foam cups to improve their performance. [Pg.94]

Thermal stability is a crucial factor when polysaccharides are used as reinforcing agents because they suffer from inferior thermal properties compared to inorganic fillers. However, thermogravimetric analysis (TGA) of biocomposites suggested that the degradation temperatures of biocomposites are in close proximity with those of carbon black composites (Table-1). [Pg.122]

It was concluded that the filler partition and the contribution of the interphase thickness in mbber blends can be quantitatively estimated by dynamic mechanical analysis and good fitting results can be obtained by using modified spline fit functions. The volume fraction and thickness of the interphase decrease in accordance with the intensity of intermolecular interaction. [Pg.319]


See other pages where Fillers, analysis is mentioned: [Pg.737]    [Pg.737]    [Pg.142]    [Pg.184]    [Pg.186]    [Pg.232]    [Pg.328]    [Pg.11]    [Pg.16]    [Pg.148]    [Pg.150]    [Pg.241]    [Pg.522]    [Pg.4]    [Pg.7]    [Pg.13]    [Pg.43]    [Pg.44]    [Pg.69]    [Pg.70]    [Pg.133]    [Pg.158]    [Pg.127]    [Pg.85]    [Pg.319]    [Pg.496]    [Pg.549]    [Pg.576]    [Pg.591]    [Pg.613]    [Pg.792]   


SEARCH



Dynamic Mechanical Analysis, fillers

Filler surface, thermogravimetric analyses

Fillers dispersion thermal analysis

Fillers, analysis DRIFTS

Reinforcing fillers finite element analysis

© 2024 chempedia.info