Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic surface analytical techniques

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

The Scanning Tunneling Microscope has demonstrated unique capabilities for the examination of electrode topography, the vibrational spectroscopic imaging of surface adsorbed species, and the high resolution electrochemical modification of conductive surfaces. Here we discuss recent progress in electrochemical STM. Included are a comparison of STM with other ex situ and in situ surface analytic techniques, a discussion of relevant STM design considerations, and a semi-quantitative examination of faradaic current contributions for STM at solution-covered surfaces. Applications of STM to the ex situ and in situ study of electrode surfaces are presented. [Pg.174]

X-Ray Photoelectron Spectroscopy (XPS). This technique is also known as electron spectroscopy for chemical analysis (ESCA), and as this name implies, it is a surface analytical technique. At present it is probably the most versatile and generally applicable surface spectroscopic technique. It is called XPS because of the type of beam used to study the interfacial region, that is, X-rays. These X-rays consist of monochromatic radiation—radiation of a given energy—emitted by a metal target bombarded by an electron beam of several kiloelectron volts of kinetic energy... [Pg.77]

The interfacial region of a metal up to the IHP has been considered as an electronic molecular capacitor, and this model has explained many experimental results with success20. Another important model is the jellium model21 (Fig. 3.13fo). From an experimental point of view, the development of in situ infrared and Raman spectroscopic techniques (Chapter 12) to observe the structure, and the calculation of the bond strength at the electrode surface can better elucidate the organization of the double layer. Other surface analytical techniques such as EXAFS are also valuable. [Pg.53]

Surface analytical techniques. A variety of spectroscopic methods have been used to characterize the nature of adsorbed species at the solid-water interface in natural and experimental systems (Brown et al, 1999). Surface spectroscopy techniques such as extended X-ray absorption fine structure spectroscopy (EXAFS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) have been used to characterize complexes of fission products, thorium, uranium, plutonium, and uranium sorbed onto silicates, goethite, clays, and microbes (Chisholm-Brause et al, 1992, 1994 Dent et al, 1992 Combes et al, 1992 Bargar et al, 2000 Brown and Sturchio, 2002). A recent overview of the theory and applications of synchrotron radiation to the analysis of the surfaces of soils, amorphous materials, rocks, and organic matter in low-temperature geochemistry and environmental science can be found in Fenter et al (2002). [Pg.4760]

A rate constant k is assigned to each surface chemical reaction. This is a schematic representation of the mechanism based upon analogous reactions of metal ion complexes in solution (see Purcell and Kotz, 1977, p, 659-669). Experimental determination of dissolved reactant and product concentrations [ArOH(aq), Mn Caq), etc.] can provide indirect information about the surface reaction [discussed in Stone (1986), Stone and Morgan (1987), and Stone (1987)]. Additional detail concerning the stoichiometry and structure of surface species will require the use of spectroscopic or other surface-analytical techniques. [Pg.244]

The application of the most powerful simulation and physical-chemical techniques and their skill in discovering and explain structural and dynamical properties of complex materials is presented. Moreover, the development of sophisticated spectroscopic and analytical techniques are shown to give decisive improvements to the growth of surface oxide science, generating new tools for the knowledge of catalysts structure and reaction mechanisms. [Pg.448]

Ionic liquids at the gas-liquid and solid-liquid interface have been extensively studied by a variety of surface analytical techniques. The most prominent technique for surface orientational analysis proves to be SFG. Other vibrational spectroscopic and surface-sensitive techniques such as surface-enhanced Raman spectroscopy (SERS) and total internal reflection Raman spectroscopy (TIR Raman) have been employed for studying surface processes these techniques, however, have not been applied yet specifically for the study of ionic hquids. [Pg.172]

The objective of this paper is to present a review of the results of some of the microscopic/spectroscopic techniques which have been used in the study of adhesion. The spectroscopic techniques to be discussed are listed in Table I adapted from Baun (4). A brief review of each technique will be followed by a discussion of results illustrating the application of the technique to polymer/metal, fiber/matrix, and composite/composite adhesion. A recent, more detailed review of the use of surface analytical techniques applied to polymer/metal adhesion has been published (6). [Pg.125]

Commonly used spectroscopic or analytical techniques for characterizing surfaces and coating layers on porous silicon are Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, energy dispersive X-ray spectrometry, fluorescence spectroscopy, UV-Vis absorption/reflectance spectroscopy, thin film optical interference spectroscopy, impedance spectroscopy, optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, ellipsometry, nitrogen adsorption/desorp-tion analysis, and water contact angle. [Pg.203]

In this work, a silane-derivatized dithiocarbamate iniferter was utilized to prepare PMAA brushes on Si/Si02 surfaces under UV irradiation. The combination of the photoiniferter-mediated photopolymerization with a UV-LED source appears to be ideally suited to the direct preparation of polyelectrolyte brushes with minimal free polymer formation during brash synthesis. Following characterization of the PMAA brushes by means of surface-analytical techniques, such as quartz crystal micro-balance with dissipation monitoring (QCM-D), spectroscopic ellipsometry, and static contact-angle measurements, the PMAA brushes were demonstrated to enhance aqueous lubrication of Si/ Si02 under low-contact-pressure conditions. [Pg.187]

Surface analytical techniques can be classified in terms of the excitating and emitted probe cfr. Table 4.4). The penetration of the physical probe increases fl om ions (ISS, RBS, SIMS) to electrons (XPS) and finally photons (UV/VIS, IR, XRF, etc.). Amongst the photon beam techniques which show some degree of surface sensitivity, in practice only XPS, total reflection X-ray fluorescence (TXRF) and laser-induced mass spectroscopic methods (LMMS),... [Pg.407]

Electron spectroscopic techniques require vacuums of the order of 10 Pa for their operation. This requirement arises from the extreme surface-specificity of these techniques, mentioned above. With sampling depths of only a few atomic layers, and elemental sensitivities down to 10 atom layers (i. e., one atom of a particular element in 10 other atoms in an atomic layer), the techniques are clearly very sensitive to surface contamination, most of which comes from the residual gases in the vacuum system. According to gas kinetic theory, to have enough time to make a surface-analytical measurement on a surface that has just been prepared or exposed, before contamination from the gas phase interferes, the base pressure should be 10 Pa or lower, that is, in the region of ultrahigh vacuum (UHV). [Pg.9]

One of the most significant applications of STM to electrochemistry would involve the application of the full spectroscopic and imaging powers of the STM for electrode surfaces in contact with electrolytes. Such operation should enable the electrochemist to access, for the first time, a host of analytical techniques in a relatively simple and straightforward manner. It seems reasonable to expect at this time that atomic resolution images, I-V spectra, and work function maps should all be obtainable in aqueous and nonaqueous electrochemical environments. Moreover, the evolution of such information as a function of time will yield new knowledge about key electrochemical processes. The current state of STM applications to electrochemistry is discussed below. [Pg.193]

An examination of the literature,10,21-24 authoritative guidances,6-9 and current industrial best practices, suggests that the analytical techniques in Table 1 be considered for the characterization of reference standards. Other techniques are occasionally employed but are not discussed here. These may include particle size analysis,25 nephelometry, heavy metals analysis,26 surface area,27 bulk density,28 pH,29 dissociation constants, microbiological testing30 and other spectroscopic measurements (e.g., NIR, fluorescence, CD, etc.). [Pg.127]


See other pages where Spectroscopic surface analytical techniques is mentioned: [Pg.157]    [Pg.157]    [Pg.76]    [Pg.344]    [Pg.286]    [Pg.192]    [Pg.469]    [Pg.203]    [Pg.333]    [Pg.366]    [Pg.60]    [Pg.398]    [Pg.64]    [Pg.676]    [Pg.676]    [Pg.137]    [Pg.17]    [Pg.6]    [Pg.118]    [Pg.31]    [Pg.18]    [Pg.70]    [Pg.283]    [Pg.157]    [Pg.599]    [Pg.494]    [Pg.586]    [Pg.520]    [Pg.102]    [Pg.659]    [Pg.74]    [Pg.279]    [Pg.88]    [Pg.24]    [Pg.590]    [Pg.162]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Analytical techniques

Spectroscopic techniques

Surface analytical technique

Surface analytics

Surfacing techniques

© 2024 chempedia.info