Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface analytical chemistry

Brown, A.P., and Anson, EC. 1977. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Analytical Chemistry 49, 1589-1595. [Pg.279]

Ramasamy, S. M., Senthilnathan, V. P. and Hurtubise, R. J, 1986, Determination of room-temperature fluorescence and phosphorescence quantum yields for compounds adsorbed on solid surfaces. Analytical Chemistry 1986, 58, 612-616. [Pg.401]

Horrocks, B.R., Schmidtke, D., Heller, A. and Bard, A.J. (1993) Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen-peroxide at surfaces. Analytical Chemistry, 65, 3605-3614. [Pg.242]

C. M. Halliwell and A. E. G. Cass. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Analytical Chemistry 73 (11), 2476-2483... [Pg.379]

The methods have in turn launched the new fields of nanoscience and nanoteclmology, in which the manipulation and characterization of nanometre-scale structures play a crucial role. STM and related methods have also been applied with considerable success in established areas, such as tribology [2], catalysis [3], cell biology [4] and protein chemistry [4], extending our knowledge of these fields into the nanometre world they have, in addition, become a mainstay of surface analytical laboratories, in the worlds of both academia and industry. [Pg.1676]

Another important area of analytical chemistry, which receives some attention in this text, is the development of new methods for characterizing physical and chemical properties. Determinations of chemical structure, equilibrium constants, particle size, and surface structure are examples of a characterization analysis. [Pg.9]

A number of glossaries of terms and symbols used in the several branches of chemistry have been pubHshed. They include physical chemistry (102), physical—organic chemistry (103), and chemical terminology (other than nomenclature) treated in its entirety (104). lUPAC has also issued recommendations in the fields of analytical chemistry (105), coUoid and surface chemistry (106), ion exchange (107), and spectroscopy (108), among others. [Pg.120]

Surface-active substances (SAS) are the most widespread contaminants of sewage and natural waters. They translate in small dispertion condition liquid and firm polluting substances - chlororganic, mineral oils, pesticides. Therefore, the SAS contents determination in water solutions is now one of actual tasks of analytical chemistry. [Pg.108]

The main supramolecular self-assembled species involved in analytical chemistry are micelles (direct and reversed), microemulsions (oil/water and water/oil), liposomes, and vesicles, Langmuir-Blodgett films composed of diphilic surfactant molecules or ions. They can form in aqueous, nonaqueous liquid media and on the surface. The other species involved in supramolecular analytical chemistry are molecules-receptors such as calixarenes, cyclodextrins, cyclophanes, cyclopeptides, crown ethers etc. Furthermore, new supramolecular host-guest systems arise due to analytical reaction or process. [Pg.417]

Chemistry may be a forbidding environment for many nonchemists there are few rules that link basic physics with the observable world, and typical molecules sport so many degrees of freedom that predictions of any kind inevitably involve gross simplifications. So, analytical chemistry thrives on very reproducible measurements that just scratch the phenomenological surface and are only indirectly linked to whatever one should determine. A case in point what is perceived as off-white color in a bulk powder can be due to any form of weak absorption in the VlS(ible) range (X = 400-800 nm), but typically just one wavelength is monitored. [Pg.1]

Principles and Characteristics A substantial percentage of chemical analyses are based on electrochemistry, although this is less evident for polymer/additive analysis. In its application to analytical chemistry, electrochemistry involves the measurement of some electrical property in relation to the concentration of a particular chemical species. The electrical properties that are most commonly measured are potential or voltage, current, resistance or conductance charge or capacity, or combinations of these. Often, a material conversion is involved and therefore so are separation processes, which take place when electrons participate on the surface of electrodes, such as in polarography. Electrochemical analysis also comprises currentless methods, such as potentiometry, including the use of ion-selective electrodes. [Pg.666]

Macrocyclic Compounds in Analytical Chemistry. Edited by Yury A. Zolotov Surface-Launched Acoustic Wave Sensors Chemical Sensing and Thin-Film Characterization. By Michael Thompson and David Stone Modern Isotope Ratio Mass Spectrometry. Edited by T. J. Platzner High Performance Capillary Electrophoresis Theory, Techniques, and Applications. Edited by Morteza G. Khaledi... [Pg.654]

Vol. 9 Analytical Chemistry of Titanium Metals and Compounds. By Maurice Codell Vol. 10 The Chemical Analysis of Air Pollutants. By the late Morris B. Jacobs Vol. 11 X-Ray Spectrochemical Analysis. Second Edition. By L. S. Birks Vol. 12 Systematic Analysis of Surface-Active Agents. Second Edition. By Milton J. Rosen and Henry A. Goldsmith... [Pg.353]

Royce W. Murray is Kenan Professor of Chemistry at the University of North Carolina at Chapel Hill. He received his B.S. from Birmingham Southern College in 1957 and his Ph.D. from Northwestern University in 1960. His research areas are analytical chemistry and materials science with specialized interests in electrochemical techniques and reactions, chemically derivatized surfaces in electrochemistry and analytical chemistry, electrocatalysis, polymer films and membranes, solid state electrochemistry and transport phenomena, and molecular electronics. He is a member of the National Academy of Sciences. [Pg.199]

Freely suspended liquid droplets are characterized by their shape determined by surface tension leading to ideally spherical shape and smooth surface at the subnanometer scale. These properties suggest liquid droplets as optical resonators with extremely high quality factors, limited by material absorption. Liquid microdroplets have found a wide range of applications for cavity-enhanced spectroscopy and in analytical chemistry, where small volumes and a container-free environment is required for example for protein crystallization investigations. This chapter reviews the basic physics and technical implementations of light-matter interactions in liquid-droplet optical cavities. [Pg.471]

The anomalous features are observed on well-ordered (111) surfaces in a variety of electrolytes over a wide range of pH (0-11), but the potentials at which the features appear and the detailed shapes of the I-V curves vary considerably. Specifically, the potential region (versus RHE) in which the features appear changes with anion concentration in sulphate and chloride electrolytes, but not in fluoride, perchlorate, bicarbonate or hydroxide electrolyte. In sulfate electrolyte, at constant anion concentration the region shifts (versus RHE) with varying pH, while in fluoride, perchlorate, bicarbonate and hydroxide electrolyte it does not. The use of UHV surface analytical techniques has established to a reasonable (but not definitive) extent that adventitious impurities are not involved in the anomalous process, i.e., the only species participating in the chemistry are protons/hydroxyIs, water and the anions of the solute. On the basis of the pH and anion concentration dependencies, I agree with the... [Pg.40]

Initial studies, described here, involved the use of an ultrahigh vacuum (UHV) surface-analytical instrument coupled to an antechamber. The antechamber allows experiments in solution and electrochemical treatments without transfer of samples outside of the system s controlled atmosphere. Focusing on the chemistry of copper surfaces in aqueous environments suggests the importance of studying the initial stages of surface reactivity with oxygen and water. Electrochemical experiments involve electrolytes thus their surface reactivity should be studied as well. [Pg.99]

L/evelopment of sophisticated surface analytical techniques over the past two decades has revived interest in the study of phenomena that occur at the electrode-solution interface. As a consequence of this renewed activity, electrochemical surface science is experiencing a rapid growth in empirical information. The symposium on which this book was based brought together established and up-and-coming researchers from the three interrelated disciplines of electrochemistry, surface science, and metal-cluster chemistry to help provide a better focus on the current status and future directions of research in electrochemistry. The symposium was part of the continuing series on Photochemical and Electrochemical Surface Science sponsored by the Division of Colloid and Surface Chemistry of the American Chemical Society. [Pg.558]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]


See other pages where Surface analytical chemistry is mentioned: [Pg.2725]    [Pg.202]    [Pg.8]    [Pg.208]    [Pg.42]    [Pg.393]    [Pg.291]    [Pg.20]    [Pg.312]    [Pg.116]    [Pg.192]    [Pg.115]    [Pg.1]    [Pg.26]    [Pg.51]    [Pg.2]    [Pg.692]    [Pg.52]    [Pg.746]    [Pg.246]    [Pg.190]    [Pg.364]    [Pg.15]    [Pg.125]    [Pg.466]    [Pg.529]    [Pg.406]    [Pg.510]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Analytical chemistry analyte

Analytical chemistry analytes

Chemistry analytical

Surface analytical chemistry, effect

Surface analytics

Surface chemistry

© 2024 chempedia.info