Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Near-surface region

Secondly, a short pulse duration is required in order to achieve a good axial resolution, i.e. two signals close together should be detected without interference. The task can be, for example, to detect a small reflector close to the surface or back wall of the test object, as the inspection has to cover the total volume as complete as possible, including the near-surface regions. [Pg.708]

Energetic particles interacting can also modify the structure and/or stimulate chemical processes on a surface. Absorbed particles excite electronic and/or vibrational (phonon) states in the near-surface region. Some surface scientists investigate the fiindamental details of particle-surface interactions, while others are concerned about monitormg the changes to the surface induced by such interactions. Because of the importance of these interactions, the physics involved in both surface analysis and surface modification are discussed in this section. [Pg.305]

A popular electron-based teclmique is Auger electron spectroscopy (AES), which is described in section Bl.25.2.2. In AES, a 3-5 keV electron beam is used to knock out iimer-shell, or core, electrons from atoms in the near-surface region of the material. Core holes are unstable, and are soon filled by either fluorescence or Auger decay. In the Auger... [Pg.307]

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a monocluomatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy not only provides the atomic composition, but also infonnation conceming the chemical enviromnent of the atoms in the near-surface region. Thus, it is probably the most popular and usefiil surface analysis teclmique. There are a number of fonus of photoelectron spectroscopy in conuuon use. [Pg.307]

X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical analysis (ESCA), is described in section Bl.25,2.1. The most connnonly employed x-rays are the Mg Ka (1253.6 eV) and the A1 Ka (1486.6 eV) lines, which are produced from a standard x-ray tube. Peaks are seen in XPS spectra that correspond to the bound core-level electrons in the material. The intensity of each peak is proportional to the abundance of the emitting atoms in the near-surface region, while the precise binding energy of each peak depends on the chemical oxidation state and local enviromnent of the emitting atoms. The Perkin-Elmer XPS handbook contains sample spectra of each element and bindmg energies for certain compounds [58]. [Pg.308]

Analysis of Surface Elemental Composition. A very important class of surface analysis methods derives from the desire to understand what elements reside at the surface or in the near-surface region of a material. The most common techniques used for deterrnination of elemental composition are the electron spectroscopies in which electrons or x-rays are used to stimulate either electron or x-ray emission from the atoms in the surface (or near-surface region) of the sample. These electrons or x-rays are emitted with energies characteristic of the energy levels of the atoms from which they came, and therefore, contain elemental information about the surface. Only the most important electron spectroscopies will be discussed here, although an array of techniques based on either the excitation of surfaces with or the collection of electrons from the surface have been developed for the elucidation of specific information about surfaces and interfaces. [Pg.274]

Electron Microprobe A.na.Iysis, Electron microprobe analysis (ema) is a technique based on x-ray fluorescence from atoms in the near-surface region of a material stimulated by a focused beam of high energy electrons (7—9,30). Essentially, this method is based on electron-induced x-ray emission as opposed to x-ray-induced x-ray emission, which forms the basis of conventional x-ray fluorescence (xrf) spectroscopy (31). The microprobe form of this x-ray fluorescence spectroscopy was first developed by Castaing in 1951 (32), and today is a mature technique. Primary beam electrons with energies of 10—30 keV are used and sample the material to a depth on the order of 1 pm. X-rays from all elements with the exception of H, He, and Li can be detected. [Pg.285]

Once these corrections are made, quantitative ema can be used to determine concentrations of elements in the near-surface region (ca 1 -lm) of samples of interest. [Pg.285]

Stony Irons. The stony iron meteorites are composed of substantial iron and siUcate components. The paHasites contain cm-sized ohvine crystals embedded ia a soHd FeNi metal matrix and have properties consistent with formation at the core mantle boundary of differentiated asteroids. The mesosiderites are composed of metal and siUcates that were fractured and remixed, presumably ia the near-surface regions of their parent bodies. [Pg.99]

Fig. 7. Bombardment processes at the surface and in the near-surface region of a sputtering target, where represents the energetic particle used for bombarding the surface <), an adsorbed surface species 0> atoms and x, lattice defects. Fig. 7. Bombardment processes at the surface and in the near-surface region of a sputtering target, where represents the energetic particle used for bombarding the surface <), an adsorbed surface species 0> atoms and x, lattice defects.
Not only is topographical information produced in the SEM, but information concerning the composition near surface regions of the material is provided as well. There are also a number of important instruments closely related to the SEM, notably the electron microprobe (EMP) and the scanning Auger microprobe (SAM). Both of these instruments, as well as the TEM, are described in detail elsewhere in this volume. [Pg.71]

As earlier discussed, the dominant factor in the near-surface region is the particle detection system. For a typical silicon surface barrier detector (15-keV FWHM resolution for Fle ions), this translates to a few hundred A for protons and 100— 150 A for Fle in most targets. When y rays induced by incident heavy ions are the detected species (as in FI profiling), resolutions in the near-surface region may be on order of tens of A. The exact value for depth resolution in a particular material depends on the rate of energy loss of incident ions in that material and therefore upon its composition and density. [Pg.688]

The MOKE technique has a broad range of applications from the analysis of ultrathin films (less than about 2 nm) to the analysis of the near-surface region of bulk ferromagnets ... [Pg.725]

MOKE measurements can be made using relatively simple and inexpensive apparatus, compared to most other surface magnedc probes and surface analytical techniques. MOKE is usefid for the mj netic characterizadon of films of one to several monolayers, thin films, or the near-surface regions of bulk materials. MOKE has... [Pg.733]

The bombardment of a sample with a dose of high energetic primary ions (1 to 20 keV) results in the destruction of the initial surface and near-surface regions (Sect. 3.1.1). If the primary ion dose is higher than 10 ions mm the assumption of an initial, intact surface is no longer true. A sputter equilibrium is reached at a depth greater than the implantation depth of the primary ions. The permanent bombardment of the sample with primary ions leads to several sputter effects more or less present on any sputtered surface, irrespective of the instrumental method (AES, SIMS, GDOES. ..). [Pg.106]

The near-surface region is partially oxidized during OJ bombardment. During the sputter process the chemical bonding of the oxides is broken. Because the binding... [Pg.111]

A second set of examples deals with the analysis of near-surface regions of glasses which normally have so-called altered or leached layers. The altered layer is found for soda-lime glasses and for many glasses used for optical applications. The chan-... [Pg.247]

NRA [4.264] and supports the statement that SIMS and IBSCA react in quite a different manner to slight changes in the chemical matrix. This effect can be used as a indicator of increased levels of H and OH in the near-surface region of oxidic glasses when both methods are employed. [Pg.249]


See other pages where Near-surface region is mentioned: [Pg.307]    [Pg.309]    [Pg.311]    [Pg.922]    [Pg.271]    [Pg.390]    [Pg.395]    [Pg.397]    [Pg.40]    [Pg.392]    [Pg.517]    [Pg.521]    [Pg.529]    [Pg.36]    [Pg.37]    [Pg.365]    [Pg.371]    [Pg.498]    [Pg.512]    [Pg.688]    [Pg.690]    [Pg.723]    [Pg.727]    [Pg.107]    [Pg.167]    [Pg.241]    [Pg.243]    [Pg.248]    [Pg.401]    [Pg.412]    [Pg.246]    [Pg.331]    [Pg.557]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.25 , Pg.38 , Pg.239 , Pg.304 , Pg.334 , Pg.362 ]




SEARCH



Near region

Surface region

© 2024 chempedia.info