Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber-modified styrene-acrylonitrile copolymers

When the physical modification method is used, PS is modified by mechanical stirring with various synthetic rubbers such as polybutadiene, polybutadiene styrene, polyisopropene, polychloropropene, polybutadiene styrene-acrylonitrile copolymers. In the chemical modification, PS is modified with polyfunctional modificators in the presence of cationic catalysis. [Pg.259]

In the late 1940s, the demand for styrene homopolymers (PS) and styrene-acrylonitrile copolymers (SAN) was drastically reduced due to their inherent brittleness. Thus, the interest was shifted to multiphase high-impact polystyrene (HIPS) and rubber-modified SAN (ABS). In principle, both HIPS and ABS can be manufactured by either bulk or emulsion techniques. However, in actual practice, HIPS is made only by the bulk process, whereas ABS is produced by both methods [132,133]. [Pg.656]

ASA is an acrylate rubber-modified styrene acrylonitrile copolymer... [Pg.365]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

This chapter discusses the dynamic mechanical properties of polystyrene, styrene copolymers, rubber-modified polystyrene and rubber-modified styrene copolymers. In polystyrene, the experimental relaxation spectrum and its probable molecular origins are reviewed further the effects on the relaxations caused by polymer structure (e.g. tacticity, molecular weight, substituents and crosslinking) and additives (e.g. plasticizers, antioxidants, UV stabilizers, flame retardants and colorants) are assessed. The main relaxation behaviour of styrene copolymers is presented and some of the effects of random copolymerization on secondary mechanical relaxation processes are illustrated on styrene-co-acrylonitrile and styrene-co-methacrylic acid. Finally, in rubber-modified polystyrene and styrene copolymers, it is shown how dynamic mechanical spectroscopy can help in the characterization of rubber phase morphology through the analysis of its main relaxation loss peak. [Pg.666]

There are a number of flame-retardant styrenic polymers that will be covered in this chapter. These include polystyrene itself, rubber-modified polystyrene [high-impact polystyrene (HIPS)] and rubber-modified styrene-acrylonitrile copolymer [acrylonitrile-butadiene-styrene (ABS)]. Blends with styrenic... [Pg.685]

A group of new, fully miscible, polymer blends consisting of various styrene-maleic anhydride terpolymers blended with styrene-acrylonitrile copolymer and rubber-modified versions of these materials have been prepared and investigated. In particular the effects of chemical composition of the components on heat resistance and the miscibility behavior of the blends have been elucidated. Toughness and response to elevated temperature air aging are also examined. Appropriate combinations of the components may be melt blended to provide an enhanced balance of heat resistance, chemical resistance, and toughness. [Pg.49]

Composition (type of polymeric components). The base polymer (which is to be modified) may be an amorphous polymer [e.g., polystyrene (PS), styrene-acrylonitrile copolymer, polycarbonate, or poly(vinyl chloride)], a semicrystalline polymer [e.g., polyamide (PA) or polypropylene (PP)], or a thermoset resin (e.g., epoxy resin). The modifier may be a rubber-like elastomer (e.g., polybutadiene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, or ethylene-propylene-diene copolymer), a core-shell modifier, or another polymer. Even smaller amounts of a compatibilizer, such as a copolymer, are sometimes added as a third component to control the morphology. [Pg.258]

Styrene-acrylonitrile copolymer (SAN) and its impact modified versions, viz., ABS (polybutadiene rubber grafted SAN), ASA (acrylate rubber grafted SAN), AES (EPDM rubber grafted SAN)... [Pg.1042]

Natural polystyrene has a strong tendency to crack, and can only be used in most potential applications when modified to form high-impact or toughened polystyrene grades or ABS. It can be toughened by polybutadiene, butadiene-acrylonitrile copolymer rubber, or SBS or SEBS block copolymers. The rubber can be added before or after polymerisation of the styrene monomer. In the case of polybutadiene, two reactions take place styrene polymerisation, and graft copolymerisation of the styrene with the polybutadiene. A brief outline of this operation is available on the Dynasol website (www.dynasolesastomers.com). [Pg.67]

TPU can be blended with PVC combining the toughness and abrasion resistance of the TPU with the stiffness and high modulus of PVC together with cost reduction of TPU. Chlorinated polyethylene can also be used as a blend with TPU or with TPU plus PVC or with polyethylene in the latter case the chlorinated polyethylene acts as a carrier for the very incompatible polyethylene. Styrene-acrylonitrile copolymers (SAN) and the rubber-modified versions, ABS, have also been blended with thermoplastic polyurethanes. Again the stiffness and initial modulus are improved without much sacrifice of the low-temperature properties. [Pg.397]

Chemical cracking due to the refrigerator foaming agent can be prevented by controlling the rubber content, acrylonitrile content, and molecular weight of styrene-acrylonitrile copolymer, or adding a chemical resistance modifier to provide better chemical resistance to ABS resin. [Pg.117]

Isopropanol vapor was used to dissolve the matrix in polymer blends [245]. Williams and Hudson [246] etched microtomed blocks of high impact polystyrene so that the rubber particles protruded from the matrix. Later, Kesskula and Traylor [130] removed rubber particles from Hire and ABS polymers by dissolving the matrix in a cyclohexane solution of osmium tetroxide and extracting the dispersed phase for SEM. Olefin particles were removed from impact modified nylon and polyester [6]. Selective etching of the polycarbonate phase with triethyl-amine in a mixture with styrene-acrylonitrile copolymer (SAN) revealed the nature of the blend [247]. [Pg.126]

Polystyrene, general purpose Rubber-modified polystyrene, medium impact Rubber-modified polystyrene, high impact Styrene- acrylonitrile copolymer Acrylonitrile- butadiene- styrene copolymer... [Pg.76]

The physical nature of these blends does not appear to be the same as that of rubber-modified polystyrenes. When this type of ABS polymer is treated with a solvent such as methyl ethyl ketone the sample swells and only partially breaks up this indicates that rubber networks permeate the styrene-acrylonitrile copolymer matrix. When rubber-modified polystyrenes are treated with a solvent such as toluene, complete disintegration into fine particles occurs. [Pg.81]

Rubber-modified styrene-acrylonitrile copolymers (ABS) This material has a continuous SAN phase with about 15 wt.% rubber modification, generally polybutadiene. In most applications, impact resistance is the reason for the selection of ABS. Applications include housings and covers for appliances and tools, plus a variety of automotive moldings. [Pg.864]

Rubber-Modified Copolymers. Acrylonitrile—butadiene—styrene polymers have become important commercial products since the mid-1950s. The development and properties of ABS polymers have been discussed in detail (76) (see Acrylonitrile polymers). ABS polymers, like HIPS, are two-phase systems in which the elastomer component is dispersed in the rigid SAN copolymer matrix. The electron photomicrographs in Figure 6 show the difference in morphology of mass vs emulsion ABS polymers. The differences in stmcture of the dispersed phases are primarily a result of differences in production processes, types of mbber used, and variation in mbber concentrations. [Pg.508]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-buta-diene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some poly acrylates. [Pg.341]

STYRENE. Styrene, CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM). styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, rubber-modified impact polystyrene, expandable polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile resins (SAN), styrene-butadiene latex, styrene-butadiene rubber (SBR). and unsaturated polyester resins. See also Acrylonitrile Polymers. [Pg.1554]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

Acrylonitrile-styrene-acrylate (ASA) constitutes a versatile member of the group of styrenic copolymers used for housings, covers and other applications which require excellent surface appearance and environmental stability combined with high impact resistance and stiffness. It consists of a poly(styrene-acrylonitrile) matrix modified with small rubber particles. [Pg.341]

Craze formation is a dominant mechanism in the toughening of glassy polymers by elastomers in polyblends. Examples are high-impact polystyrene (HIPS), impact poly(vinyl chloride), and ABS (acrylonitrile-butadiene-styrene) polymers. Polystyrene and styrene-acrylonitrile (SAN) copolymers fracture at strains of 10 , whereas rubber-modified grades of these polymers (e.g., HIPS and ABS) form many crazes before breaking at strains around 0.5. Rubbery particles in... [Pg.425]


See other pages where Rubber-modified styrene-acrylonitrile copolymers is mentioned: [Pg.134]    [Pg.22]    [Pg.203]    [Pg.194]    [Pg.134]    [Pg.203]    [Pg.363]    [Pg.552]    [Pg.18]    [Pg.188]    [Pg.361]    [Pg.134]    [Pg.51]    [Pg.242]    [Pg.606]    [Pg.443]    [Pg.327]    [Pg.311]    [Pg.643]    [Pg.58]    [Pg.321]    [Pg.325]    [Pg.171]   


SEARCH



Acrylonitrile copolymers

Acrylonitrile rubber

Copolymer modifiers

Rubber copolymer

Rubber modifier

STYRENE-ACRYLONITRILE

Styrene acrylonitrile rubber

Styrene-acrylonitrile copolymers

Styrene-copolymers

© 2024 chempedia.info