Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene acrylonitrile rubber

Random copolymers -A-A-A-B-A-B-B-A-A- Styrene-butadiene rubber Styrene-acrylonitrile rubber Ethylene-vinyl acetate copolymer... [Pg.16]

A. J. Yu and R. E. Gallagher, Acrylate-Styrene-Acrylonitrile Composition and Method of Making the Same, U.S. Pat. 3,944, 631 (1976). Latex IPN of acrylate elastomer/styrene-acrylonitrile. Latex IPN embedded in linear styrene-acrylonitrile. Rubber-toughened, impact-resistant plastics. [Pg.261]

SAN copolymers [ACRYLONITRILE POLYTffiRS - SURVEY AND SAN (STYRENE-ACRYLONITRILECO-POLYTffiRS)] (Vol 1) -SBRfrom [STYRENE-BUTADIENE RUBBER] (Vol 22)... [Pg.938]

The common feature of these materials was that all contained a high proportion of acrylonitrile or methacrylonitrile. The Vistron product, Barex 210, for example was said to be produced by radical graft copolymerisation of 73-77 parts acrylonitrile and 23-27 parts by weight of methyl acrylate in the presence of a 8-10 parts of a butadiene-acrylonitrile rubber (Nitrile rubber). The Du Pont product NR-16 was prepared by graft polymerisation of styrene and acrylonitrile in the presence of styrene-butadiene copolymer. The Monsanto polymer Lopac was a copolymer of 28-34 parts styrene and 66-72 parts of a second monomer variously reported as acrylonitrile and methacrylonitrile. This polymer contained no rubbery component. [Pg.416]

Although the nitrile rubbers employed normally contain about 35% acrylonitrile the inclusion of nitrile rubber with a higher butadiene content will increase the toughness at low temperatures. For example, whereas the typical blend cited above has an impact strength of only 0.9 ft Ibf in notch at 0°F, a blend of 70 parts styrene-acrylonitrile, 30 parts of nitrile rubber (35% acrylonitrile) and 10 parts nitrile rubber (26% acrylonitrile) will have an impact value of 4.5 ftlbfin notch at that temperature. ... [Pg.442]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

When the physical modification method is used, PS is modified by mechanical stirring with various synthetic rubbers such as polybutadiene, polybutadiene styrene, polyisopropene, polychloropropene, polybutadiene styrene-acrylonitrile copolymers. In the chemical modification, PS is modified with polyfunctional modificators in the presence of cationic catalysis. [Pg.259]

Coran and Patel [33] selected a series of TPEs based on different rubbers and thermoplastics. Three types of rubbers EPDM, ethylene vinyl acetate (EVA), and nitrile (NBR) were selected and the plastics include PP, PS, styrene acrylonitrile (SAN), and PA. It was shown that the ultimate mechanical properties such as stress at break, elongation, and the elastic recovery of these dynamically cured blends increased with the similarity of the rubber and plastic in respect to the critical surface tension for wetting and with the crystallinity of the plastic phase. Critical chain length of the rubber molecule, crystallinity of the hard phase (plastic), and the surface energy are a few of the parameters used in the analysis. Better results are obtained with a crystalline plastic material when the entanglement molecular length of the... [Pg.641]

In the late 1940s, the demand for styrene homopolymers (PS) and styrene-acrylonitrile copolymers (SAN) was drastically reduced due to their inherent brittleness. Thus, the interest was shifted to multiphase high-impact polystyrene (HIPS) and rubber-modified SAN (ABS). In principle, both HIPS and ABS can be manufactured by either bulk or emulsion techniques. However, in actual practice, HIPS is made only by the bulk process, whereas ABS is produced by both methods [132,133]. [Pg.656]

The standard polymers used for rubber linings consist of materials that are cross-linkable macromolecules which, on mixing with suitable reactants that form strong chemical bonds, change from a soft deformable substance into an elastic material. These polymers include natural rubber and its corresponding synthetic, c/s-polyisoprene, styrene-butadiene rubber, polychloroprene, butyl rubber, halogenated butyl rubbers, acrylonitrile-... [Pg.938]

SBR (Styrene Butadiene Rubber) ABS (Acrylonitrile Butadiene Styrene Polymethyl methacrylate PAN (Polyacrylonitrile)... [Pg.321]

The primary use of acrylonitrile is as the raw material for the manufacture of acrylic and modacrylic fibers. Other Major uses include the production of plastics (acrylonitrile-butadiene- styrene (ABS) and styrene-acrylonitrile (SAN), nitrile rubbers, nitrile barrier resins, adiponitrile and acrylamide (EPA 1984). [Pg.80]

This method involves the mechanical blending of styrene-acrylonitrile copolymers and acrylonitrile-butadiene rubbers. Many products are possible depending on the composition of each copolymer and the relative amounts employed. [Pg.159]

In an example 70 parts (70 30 styrene acrylonitrile-copolymer) gets blended with 40 parts (35 65 acrylonitrile butadiene rubber). After it gets blended, the coagulation of the polymer is brought about by adding an acid or salt. [Pg.159]

ABS is often an alloy of styrene acrylonitrile (SAN) and polybutadiene rubber but sometimes it is a copolymer. [Pg.353]

Styrene acrylonitrile (SAN), acrylate rubber modified styrene acrylonitrile (ASA), acrylonitrile EPDM styrene (AES or AEPDS), acrylonitrile chlorinated polyethylene styrene (ACS)... [Pg.365]

ASA is an acrylate rubber-modified styrene acrylonitrile copolymer... [Pg.365]

PC/SAN alloys are blends of polycarbonate (PC), styrene-acrylonitrile copolymer (SAN) and a special rubber system. The enhanced resistance to therm ageing allows applications such as instrument panel support for the Ford Focus C-MAX, support structures for centre consoles, armrests and cup holders. [Pg.649]

Uses. Plastics and synthetic rubber are the major uses for styrene. They account for the exponential growth from a few million pounds per year in 1938 to more than 8 billion pounds today. The numerous plastics include polystyrene, styrenated polyesters, acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), and styrene-butadiene (SB). Styrene-butadiene rubber (SBR) was a landmark chemical achievement when it was comrner-cialized during World War II. The styrene derivatives are found everywhere—in food-grade film, coys, construction pipe, foam, boats, latex paints, tires, luggage, and furniture. [Pg.131]

Nitrile rubber has declined in importance, but has been replaced by styrene-acrylonitrile (SAN) copolymers and acrylonitrile-butadiene-styrene... [Pg.278]

The large demand for benzene is due to its use as a starting material in the production of polystyrene, acrylonitrile styrene butadiene rubber, nylons, polycarbonates and linear alkyl benzene detergent. All of these final chemical products that are suitable to form into consumer goods have multiple chemical transformations in various industrial processes to obtain them from benzene. Because the production of benzene does not involve a liquid adsorptive process on a zeolite, these processes are not described here but can be found in other sources. However, it is important to note that benzene is typically a large byproduct from an aromatics... [Pg.230]

In Table 8.4 we see that most butadiene is polymerized either by itself or with styrene or acrylonitrile. The most important synthetic elastomer is styrene-butadiene rubber (SBR). SBR, along with polybutadiene, has its biggest market in automobile tires. Specialty elastomers are polychloroprene and nitrile rubber, and an important plastic is acrylonitrile/butadiene/styrene (ABS) terpolymer. Butadiene is made into adiponitrile, which is converted into hexamethylenediamine (HMDA), on of the monomers for nylon. [Pg.126]

Acrylonitrile-butadiene-styrene (ABS) copolymers Ethylene-methacrylic acid copolymers Styrene-butadiene rubber copolymers (SBR)... [Pg.136]

ABS Three-component copolymer of acrylonitrile, butadiene, and styrene, alloy Rubber-toughened materials in which the matrix can be a mixture of polymer tyrpes. alternation copolymer Ordered copolymer in which every other building is a different mer. azeotropic copolymer Copolymer in which the feet and composition of the copolymer are the same, blends Mixtures of different polymers on a molecular level may exist in one or two phases, block copolymer Copolymer that contains long sequences or runs of one mer or both mers. [Pg.234]


See other pages where Styrene acrylonitrile rubber is mentioned: [Pg.8596]    [Pg.98]    [Pg.232]    [Pg.1289]    [Pg.8596]    [Pg.98]    [Pg.232]    [Pg.1289]    [Pg.134]    [Pg.443]    [Pg.449]    [Pg.54]    [Pg.271]    [Pg.939]    [Pg.515]    [Pg.9]    [Pg.47]    [Pg.411]    [Pg.224]    [Pg.437]    [Pg.572]    [Pg.1336]    [Pg.59]    [Pg.8]    [Pg.530]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



ASA or AAS Acrylonitrile Styrene Acrylic Rubber

Acrylate rubber modified styrene acrylonitrile

Acrylonitrile rubber

Acrylonitrile-butadiene-styrene base rubber

Acrylonitrile-butadiene-styrene rubber particle formation

STYRENE-ACRYLONITRILE

Styrene-acrylonitrile , rubber-modified

Styrene-acrylonitrile -grafted EPDM rubber

Styrene-acrylonitrile copolymers rubber-modified

© 2024 chempedia.info