Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation mechanism process

Cooling rates can affect product properties in a number of ways. If the polymer melt is sheared into shape the molecules will be oriented. On release of shearing stresses the molecules will tend to re-coil or relax, a process which becomes slower as the temperature is reduced towards the Tg. If the mass solidifies before relaxation is complete (and this is commonly the case) frozen-in orientation will occur and the polymeric mass will be anisotropic with respect to mechanical properties. Sometimes such built-in orientation is deliberately introduced, such as... [Pg.174]

The process of spin-lattice relaxation involves the transfer of magnetization between the magnetic nuclei (spins) and their environment (the lattice). The rate at which this transfer of energy occurs is the spin-lattice relaxation-rate (/ , in s ). The inverse of this quantity is the spin-lattice relaxation-time (Ti, in s), which is the experimentally determinable parameter. In principle, this energy interchange can be mediated by several different mechanisms, including dipole-dipole interactions, chemical-shift anisotropy, and spin-rotation interactions. For protons, as will be seen later, the dominant relaxation-mechanism for energy transfer is usually the intramolecular dipole-dipole interaction. [Pg.128]

NMR spin relaxation is not a spontaneous process, it requires stimulation by a suitable fluctuating field to induce an appropriate spin transition to reestablish equilibrium magnetization. There are four main mechanisms for obtaining relaxation dipole-dipole (most significant relaxation mechanism for I = 1/2 nuclei), chemical shift anisotropy, spin rotation, and quadrupolar (most significant relaxation mechanism for I > 1/2 nuclei) (Claridge, 1999). [Pg.46]

The double commutator [[g, Tr /) (/], Tlp q may form new operators different from Q, and some of these new operators may not even be physical observables. When the double commutator conserves the operator Q, one speaks of the auto-correlation mechanism. Otherwise, one speaks of the cross-relaxation process. In other words, cross-relaxation is independent of the nature of the relaxation mechanism, but involves the interconversion between different operators. To facilitate such a possibility, it is desirable to write the density operator in terms of a complete set of orthogonal basis... [Pg.77]

For spin-f nuclei, dipolar interactions may be modulated by intramolecular (DF, reorientation etc.) and/or intermolecular (TD) processes. In general, the intra- and inter-molecular processes can produce quite different Tj frequency dispersion curves. In practice, NMR field cycling experiments are often needed to extend the frequency domain from those employed in conventional spectrometers to a lower frequency range (i.e., the kHz regime) for unambiguous separation (and identification) of different relaxation mechanisms. The proton spin relaxation by anisotropic TD in various mesophases has been considered by Zumer and Vilfan.131 133,159 In the nematic phase, Zumer and Vilfan found the following expression for T ... [Pg.106]

Since different molecular processes may simultaneously contribute to the spin relaxation in LC, the relaxation rates due to various relaxation mechanisms are additive if the motions can be decoupled on the basis of sufficiently different correlation times 30... [Pg.111]

To conclude, even if there exist several processes that affect the vibrational line shape it seems probable that when most of them have been sorted out and with the good agreement between theory and experiment, the lifetime broadening for a chemisorbed CO molecule is of the order of a few cm, corresponding to a lifetime of a few ps. The main vibrational energy relaxation mechanism is creation of electron-hole pairs caused by the local charge oscillations between the metal and the 2n molecular resonance crossing the Fermi level. [Pg.26]

The observations of complex dynamics associated with electron-stimulated desorption or desorption driven by resonant excitation to repulsive electronic states are not unexpected. Their similarity to the dynamics observed in the visible and near-infrared LID illustrate the need for a closer investigation of the physical relaxation mechanisms of low energy electron/hole pairs in metals. When the time frame for reaction has been compressed to that of the 10 s laser pulse, many thermal processes will not effectively compete with the effects of transient low energy electrons or nonthermal phonons. It is these relaxation channels which might both play an important role in the physical or chemical processes driven by laser irradiation of surfaces, and provide dramatic insight into subtle details of molecule-surface dynamics. [Pg.80]

As stated in Section II.B of Chapter 2, the actual correlation time for electron-nuclear dipole-dipole relaxation, is dominated by the fastest process among proton exchange, rotation, and electron spin relaxation. It follows that if electron relaxation is the fastest process, the proton correlation time Xc is given by electron-spin relaxation times Tie, and the field dependence of proton relaxation rates allows us to obtain the electron relaxation times and their field dependence, thus providing information on electron relaxation mechanisms. If motions faster than electron relaxation dominate Xc, it is only possible to set lower limits for the electron relaxation time, but we learn about some aspects on the dynamics of the system. In the remainder of this section we will deal with systems where electron relaxation determines the correlation time. [Pg.106]


See other pages where Relaxation mechanism process is mentioned: [Pg.1506]    [Pg.545]    [Pg.90]    [Pg.66]    [Pg.397]    [Pg.125]    [Pg.56]    [Pg.156]    [Pg.905]    [Pg.130]    [Pg.163]    [Pg.272]    [Pg.120]    [Pg.552]    [Pg.105]    [Pg.489]    [Pg.102]    [Pg.324]    [Pg.101]    [Pg.103]    [Pg.135]    [Pg.106]    [Pg.316]    [Pg.43]    [Pg.121]    [Pg.136]    [Pg.258]    [Pg.26]    [Pg.56]    [Pg.117]    [Pg.141]    [Pg.269]    [Pg.413]    [Pg.16]    [Pg.97]    [Pg.118]    [Pg.135]    [Pg.117]    [Pg.117]    [Pg.117]    [Pg.129]    [Pg.131]   


SEARCH



MECHANICAL RELAXATION

Mechanical process

Mechanisms process

Processing mechanics

Processive mechanism

Relaxation mechanisms

Relaxation process

© 2024 chempedia.info