Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam importers

The crude aldehyde is fractionally distilled into n- and isobutanal in a conventional aldehyde distillation unit. The reboiler of this n/iso column is designed as a heatabsorbing falling film evaporator incorporated in the oxo reactor, thus providing a neat, efficient method of recovering heat by transferring the heat of reaction in the reactor to cold n-butanal, which subsequently heats the n/iso column. The preferred hydroformylation temperature is 110-130 °C and is therefore used for the production of process steam. Whereas other oxo processes are steam importers, the RCH/RP process including the distillation of n-/isobutanol exports steam. No special pretreatment or even purification steps are necessary for the catalyst. This reduces the environmental burden still further. [Pg.80]

Economics Thanks to the high efficiency of the process and equipment design, the total energy consumption (evaluated as feeds + fuel + steam import from package boiler and steam export to urea) is lower than 6.5 Gcal/metric ton of produced ammonia. [Pg.52]

Energy Fuel consumption is lower for the ACO process relative to a steam cracker. However, steam import is higher since there is less waste heat available for recovery. [Pg.259]

Recover diesel product heat LP steam gen and BFW preheating Add heat exchangers Reduce steam import... [Pg.149]

The measured fuel flows, arch oxygen composition, and high pressure steam drum heat balance confirm that the heat duties calculated from the process side (as opposed to the flue gas side) are most accurate, as would be expected. The high pressure steam system and boiler feed water measurements impact significantly on the convection section heat balance since boiler feed water preheat and steam superheat duties make up the majority of the convection section duty. The high pressure steam import flow, and the expected versus measured and calculated S5mthesis gas compressor steam turbine performance further support that the process side, and not the flue gas side measurements are the most accurate. [Pg.301]

If inert material is to be added, then ease of separation is an important consideration. For example, steam is added as an inert to hydrocarbon cracking reactions and is an attractive material in this respect because it is easily separated from the hydrocarbon components by condensation. If the reaction does not involve any change in the number of moles, inert material has no effect on equilibrium conversion. [Pg.36]

Analogous effects are caused by the inappropriate use of utilities. Utilities are appropriate if they are necessary to satisfy the enthalpy imbalance in that part of the process. Above the pinch in Fig. 6.7a, steam is needed to satisfy the enthalpy imbalance. Figure 6.86 illustrates what happens if inappropriate use of utilities is made and some cooling water is used to cool hot streams above the pinch, say, XP. To satisfy the enthalpy imbalance above the pinch, an import of (Q mjj,+XP) is needed from steam. Overall, (Qcmin+AP) of cooling water is used. ... [Pg.168]

The original method for the manufacture of ethyne, the action of water on calcium carbide, is still of very great importance, but newer methods include the pyrolysis of the lower paraffins in the presence of steam, the partial oxidation of natural gas (methane) and the cracking of hydrocarbons in an electric arc. [Pg.169]

The Fischer-Tropsch reaction is essentially that of Eq. XVIII-54 and is of great importance partly by itself and also as part of a coupled set of processes whereby steam or oxygen plus coal or coke is transformed into methane, olefins, alcohols, and gasolines. The first step is to produce a mixture of CO and H2 (called water-gas or synthesis gas ) by the high-temperature treatment of coal or coke with steam. The water-gas shift reaction CO + H2O = CO2 + H2 is then used to adjust the CO/H2 ratio for the feed to the Fischer-Tropsch or synthesis reactor. This last process was disclosed in 1913 and was extensively developed around 1925 by Fischer and Tropsch [268]. [Pg.730]

Factors other tlian tire Si/Al ratio are also important. The alkali-fonn of zeolites, for instance, is per se not susceptible to hydrolysis of tire Al-0 bond by steam or acid attack. The concurrent ion exchange for protons, however, creates Bronsted acid sites whose AlO tetraliedron can be hydrolysed (e.g. leading to complete dissolution of NaA zeolite in acidic aqueous solutions). [Pg.2787]

The steam-distillation is continued for 5 minutes after steam can first be seen entering the condenser the ideal rate of distillation is about 4 -5 ml. of distillate per minute, but this is not critical and may be varied within reasonable limits. The receiver J is then lowered from the lip K of the condenser and the steam-distillation continued for a further two minutes, thus ensuring that no traces of liquid containing ammonia are left on the inside of the condenser. At the end of this time any liquid on the lip K is rinsed with distilled water into J, which is then ready for titration. It is important that the receiver and its contents are kept cold during the distillation and it is advisable to interpose a piece of asbestos board or other screen so that it is not exposed to the heat from the burner under the steam generator. [Pg.496]

Equip a 3 litre three-necked flask with a thermometer, a mercury-sealed mechanical stirrer and a double-surface reflux condenser. It is important that all the apparatus be thoroughly dry. Place 212 g. of trimethylene dibromide (Section 111,35) and 160 g. of ethyl malonate (Section 111,153) (dried over anhydrous calcium sulphate) in the flask. By means of a separatory funnel, supported in a retort ring and fitted into the top of the condenser with a grooved cork, add with stirring a solution of 46 g. of sodium in 800 ml. of super dry ethyl alcohol (Section 11,47,5) (I) at such a rate that the temperature of the reaction mixture is maintained at 60-65° (50-60 minutes). When the addition is complete, allow the mixture to stand until the temperature falls to 50-55°, and then heat on a water bath until a few drops of the liquid when added to water are no longer alkaline to phenolphthalein (about 2 hours). Add sufficient water to dissolve the precipitate of sodium bromide, and remove the alcohol by distillation from a water bath. Arrange the flask for steam distillation (Fig. this merely involves... [Pg.858]

Ammonia (NH3) is the most important commercial compound of nitrogen. It is produced by the Haber Process. Natural gas (methane, CH4) is reacted with steam to produce carbon dioxide and hydrogen gas (H2) in a two step... [Pg.19]

The choice of technology, the associated capital, and operating costs for a chlor—alkaU plant are strongly dependent on local factors. Especially important are local energy and transportation costs, as are environmental constraints. The primary difference ia operating costs between diaphragm, mercury, and membrane cell plants results from variations ia electricity requirements for the three processes (Table 25) so that local energy and steam costs are most important. [Pg.519]

Natural gas Hquids represent a significant source of feedstocks for the production of important chemical building blocks that form the basis for many commercial and iadustrial products. Ethyleae (qv) is produced by steam-crackiag the ethane and propane fractions obtained from natural gas, and the butane fraction can be catalyticaHy dehydrogenated to yield 1,3-butadiene, a compound used ia the preparatioa of many polymers (see Butadiene). The / -butane fractioa can also be used as a feedstock ia the manufacture of MTBE. [Pg.174]


See other pages where Steam importers is mentioned: [Pg.993]    [Pg.86]    [Pg.86]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.1042]    [Pg.340]    [Pg.164]    [Pg.290]    [Pg.18]    [Pg.216]    [Pg.993]    [Pg.86]    [Pg.86]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.1042]    [Pg.340]    [Pg.164]    [Pg.290]    [Pg.18]    [Pg.216]    [Pg.198]    [Pg.257]    [Pg.413]    [Pg.30]    [Pg.165]    [Pg.260]    [Pg.275]    [Pg.357]    [Pg.379]    [Pg.145]    [Pg.75]    [Pg.355]    [Pg.393]    [Pg.503]    [Pg.180]    [Pg.180]    [Pg.181]    [Pg.432]    [Pg.143]    [Pg.262]    [Pg.265]   


SEARCH



© 2024 chempedia.info