Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dehydrogenation of propylene

Figure 4.3 Temperature dependencies of propylene conversion (1), allene (2) and methyl acetylene (3) yields in conjugated dehydrogenation of propylene. Time of contact t = 0.045 s. Figure 4.3 Temperature dependencies of propylene conversion (1), allene (2) and methyl acetylene (3) yields in conjugated dehydrogenation of propylene. Time of contact t = 0.045 s.
In the case of conjugated dehydrogenation of propylene under optimal conditions (700 °C), allene and methyl acetylene yields equal 20% and 10%, respectively (Figure 4.3) [62], Methyl acetylene yield increases with temperature, whereas allene yield decreases. [Pg.106]

Cremer PS, Su X, Shen YR, et al Hydrogenation and dehydrogenation of propylene on Pt(lll) studied by sum frequency generation from UHV to atmospheric pressure, JPhys Chem 100 16302-16309, 1996. [Pg.120]

Production of acetone by dehydrogenation of isopropyl alcohol began in the early 1920s and remained the dominant production method through the 1960s. In the mid-1960s virtually all United States acetone was produced from propylene. A process for direct oxidation of propylene to acetone was developed by Wacker Chemie (12), but is not beheved to have been used in the United States. However, by the mid-1970s 60% of United States acetone capacity was based on cumene hydroperoxide [80-15-9], which accounted for about 65% of the acetone produced. [Pg.94]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

A two-step process involving conventional nonoxidative dehydrogenation of propane to propylene in the presence of steam, followed by the catalytic ammoxidation to acrylonitrile of the propylene in the effluent stream without separation, is also disclosed (65). [Pg.184]

About 35% of total U.S. LPG consumption is as chemical feedstock for petrochemicals and polymer iatermediates. The manufacture of polyethylene, polypropylene, and poly(vinyl chloride) requires huge volumes of ethylene (qv) and propylene which, ia the United States, are produced by thermal cracking/dehydrogenation of propane, butane, and ethane (see Olefin polymers Vinyl polymers). [Pg.187]

Worldwide, approximately 85% of acetone is produced as a coproduct with phenol. The remaining 17% is produced by on-purpose acetone processes such as the hydration of propylene to 2-propanol and the dehydrogenation of 2-propanol to acetone. The cost of production of 2-propanol sets the floor price of acetone as long as the acetone demand exceeds the coproduct acetone supply. However, there is a disparity in the growth rates of phenol and acetone, with phenol demand projected at 3.0%/yr and acetone demand at 2.0%/yr. If this continues, the coproduct supply of acetone will exceed the total acetone demand and on-purpose production of acetone will be forced to shut down the price of acetone is expected to fall below the floor price set by the on-purpose cost production. Projections indicate that such a situation might occur in the world market by 2010. To forestall such a situation, companies such as Mitsui Petrochemical and Shinnippon (Nippon Steel) have built plants without the coproduction of acetone. [Pg.290]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

Styrene manufacture by dehydrogenation of ethylbenzene is simple ia concept and has the virtue of beiag a siagle-product technology, an important consideration for a product of such enormous volume. This route is used for nearly 90% of the worldwide styrene production. The rest is obtained from the coproduction of propylene oxide (PO) and styrene (SM). The PO—SM route is complex and capital-iatensive ia comparison to dehydrogenation of ethylbenzene, but it stiU can be very attractive. However, its use is limited by the mismatch between the demands for styrene and propylene oxides (qv). [Pg.481]

Catalysts. In industrial practice the composition of catalysts are usuaUy very complex. Tellurium is used in catalysts as a promoter or stmctural component (84). The catalysts are used to promote such diverse reactions as oxidation, ammoxidation, hydrogenation, dehydrogenation, halogenation, dehalogenation, and phenol condensation (85—87). Tellurium is added as a passivation promoter to nickel, iron, and vanadium catalysts. A cerium teUurium molybdate catalyst has successfliUy been used in a commercial operation for the ammoxidation of propylene to acrylonitrile (88). [Pg.392]

A second route based on olefin disproportionation was developed by Phillips Petroleum (131). Here isobutylene reacts with propylene to form isoamylenes, which are dehydrogenated to isoprene. 2-Butene can be used in place of propylene since it also yields isoamylene and the coproduct propylene can be recycled. Use of mixed butylenes causes the formation of pentenes, giving piperjlene, which contaminates isoprene. [Pg.374]

The earhest commercial route to -butyraldehyde was a multistep process starting with ethanol, which was consecutively dehydrogenated to acetaldehyde, condensed to crotonaldehyde, and reduced to butyraldehyde. In the late 1960s, production of -butyraldehyde (and isobutyraldehyde) in Europe and the United States switched over largely to the Oxo reaction of propylene. [Pg.380]

Although ethylene is produced by various methods as follows, only a few are commercially proven thermal cracking of hydrocarbons, catalytic pyrolysis, membrane dehydrogenation of ethane, oxydehydrogenation of ethane, oxidative coupling of methane, methanol to ethylene, dehydration of ethanol, ethylene from coal, disproportionation of propylene, and ethylene as a by-product. [Pg.434]

Dehydrogenation. The dehydrogenation of paraffins is equihbrium-limited and hence requites high temperatures. Using this approach and conventional separation methods, both Houdry and UOP have commercialized the dehydrogenation of propane to propylene (92). A similar concept is possible for ethane dehydrogenation, but an economically attractive commercial reactor has not been built. [Pg.443]

Catalytic dehydrogenation of cumene, obtained by alkylation of benzene with propylene, will give a-methylstyrene (Figure 16.15). [Pg.453]

Chemicals directly based on propane are few, although as mentioned, propane and LPG are important feedstocks for the production of olefins. Chapter 6 discusses a new process recently developed for the dehydrogenation of propane to propylene for petrochemical use. Propylene has always been obtained as a coproduct with ethylene from steam cracking processes. Chapter 6 also discusses the production of aromatics from LPG through the Cyclar process. ... [Pg.31]

Like ethylene, propylene (propene) is a reactive alkene that can be obtained from refinery gas streams, especially those from cracking processes. The main source of propylene, however, is steam cracking of hydrocarbons, where it is coproduced with ethylene. There is no special process for propylene production except the dehydrogenation of propane. [Pg.33]

Purely parallel reactions are e.g. competitive reactions which are frequently carried out purposefully, with the aim of estimating relative reactivities of reactants these will be discussed elsewhere (Section IV.E). Several kinetic studies have been made of noncompetitive parallel reactions. The examples may be parallel formation of benzene and methylcyclo-pentane by simultaneous dehydrogenation and isomerization of cyclohexane on rhenium-paladium or on platinum catalysts on suitable supports (88, 89), parallel formation of mesityl oxide, acetone, and phorone from diacetone alcohol on an acidic ion exchanger (41), disproportionation of amines on alumina, accompanied by olefin-forming elimination (20), dehydrogenation of butane coupled with hydrogenation of ethylene or propylene on a chromia-alumina catalyst (24), or parallel formation of ethyl-, methylethyl-, and vinylethylbenzene from diethylbenzene on faujasite (89a). [Pg.24]

Manufacture Some of the butadiene produced is recovered from steam crackers along with ethylene and propylene. However, most of it is now produced by the dehydrogenation of butene. CH3 CH-CH-CH3 CH2-CH-CH-CH2 + H2... [Pg.134]

Nickel metal successfully catalyzes the hydrogenation of double bonds in unsaturated hydrocarbons such as propylene and butene. Can this metal also catalyze the dehydrogenation of alkanes such as propane and butane ... [Pg.402]

Catalytic oxidative dehydrogenation of propane by N20 (ODHP) over Fe-zeolite catalysts represents a potential process for simultaneous functionalization of propane and utilization of N20 waste as an environmentally harmful gas. The assumed structure of highly active Fe-species is presented by iron ions balanced by negative framework charge, mostly populated at low Fe loadings. These isolated Fe sites are able to stabilize the atomic oxygen and prevent its recombination to a molecular form, and facilitate its transfer to a paraffin molecule [1], A major drawback of iron zeolites in ODHP with N20 is their deactivation by accumulated coke, leading to a rapid decrease of the propylene yield. [Pg.373]

Methanol dehydrogenation to ethylene and propylene. In some remote ioca-tions, transportation costs become very important. Moving ethane is almost out of the question. Hauling propane for feed or ethylene itself in pressurized or supercooled vessels is expensive. Moving naphtha or gas oil as feed requires that an expensive olefins plant with unwanted by-products be built. So what s a company to do if they need an olefins-based industry at a remote site One solution that has been commercialized is the dehydrogenation of methanol to ethylene and propylene. While it may seem like paddling upstream, the transportation costs to get the feeds to the remote sites plus the capital costs of the plant make the economics of ethylene and its derivatives okay. [Pg.75]


See other pages where Dehydrogenation of propylene is mentioned: [Pg.143]    [Pg.243]    [Pg.40]    [Pg.75]    [Pg.76]    [Pg.84]    [Pg.143]    [Pg.243]    [Pg.40]    [Pg.75]    [Pg.76]    [Pg.84]    [Pg.727]    [Pg.363]    [Pg.253]    [Pg.51]    [Pg.481]    [Pg.99]    [Pg.23]    [Pg.331]    [Pg.95]    [Pg.42]    [Pg.373]    [Pg.376]    [Pg.84]    [Pg.654]    [Pg.332]    [Pg.300]    [Pg.407]    [Pg.179]    [Pg.134]    [Pg.142]   


SEARCH



Dehydrogenation of propane to propylene

© 2024 chempedia.info